
Research on Efficient and Low-cost Drug-disease 

Association Prediction Method Based on Dual Attention 

in Heterogeneous Networks 

Yujie Yang*, Yue Gao, Xiaohan Li, Wenhao Ding, Chengyang Gao 

School of Software, Yunnan University, Kunming, 650500, China 
*Corresponding author: cgyjhjy@163.com 

Keywords: Heterogeneous network, drug-disease association, attention mechanism, graph 

attention, SENet 

Abstract: Drug development usually costs a high cost, so it is very important to establish an 

efficient, low-cost and accurate prediction method of drug-disease correlation. In this paper, 

a drug-disease prediction method based on dual attention in heterogeneous networks is 

proposed. First, the experimental data set is constructed through the biological database, then 

the node feature information in the heterogeneous network is extracted by the graph attention 

network, and the node feature information is filtered and enhanced by SENet. Finally, 

through the 10% discount cross verification evaluation, GASEDDA achieved an accuracy 

of 98.5%. 

1. Introduction 

The overall drug research and development can be summarized into three stages, the first is the 

drug discovery stage, the second is the preclinical research stage, and the third is the clinical research 

stage, which is difficult to develop. New drug development usually takes 10-15 years and an 

investment of 1.5 billion US dollars. The overall development process is time-consuming and risky. 

In the United States, more than 100 drugs are screened by the Food and Drug Administration (FDA) 

every year before they are approved for market, and eventually there are only about 20% on the 

market[1]. The number of new drugs approved around the world is declining year by year and the 

failure rate of new drug approval has been higher than 90% since the 1990s[2]. In order to solve the 

problems in the process of new drug development, relevant personnel try to develop new drugs 

through the method of drug repositioning[3].  

Drug repositioning is the process of determining the potential indications of existing drugs and 

discovering new drug treatments for diseases. Drug repositioning is a new drug research and 

development strategy, and it is also considered as one of the best risk-benefit strategies in the existing 

drug research and development strategies[4]. It has attracted close attention all over the world. 

Compared with traditional drug development, drug repositioning has incomparable advantages, 

which can not only shorten the screening scope of drug development, but also save a lot of money 

and time. The traditional drug relocation methods generally include drug common biochemical 

characteristic analysis[5], drug prescription screenin[6], molecular activity similarity analysis[7] and 
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so on. With the continuous development of related research, the development and use of various 

biological databases, such as DrugBank[8], PubChem[9], SIDER[10], etc., provide a large number 

of opportunities for the development of drug relocation based on computing methods, so that 

computational drug relocation has a very broad development prospect and potential, and has been 

paid more and more attention by relevant researchers.  

At present, researchers focus on identifying new drug targets by using drug chemical structure, 

pharmacology and genome properties. Some scholars have proposed to mine the potential indications 

of listed or unlisted drugs by directly predicting the relationship between drug diseases. The existing 

drug relocation methods are mainly divided into recommendation system-based methods, machine 

learning-based methods, deep learning-based methods and web-based methods. The method based 

on recommendation system mainly uses matrix decomposition to complete the task, but because of 

the problem of cold start, it is not suitable for the prediction of new drugs or new diseases. Machine 

learning-based methods are widely used, and then they rely heavily on input data that can reflect the 

characteristics of drug diseases, which is difficult to meet in practice. The method based on deep 

learning can make use of its strong learning ability to transform the original data features into abstract 

feature representation, which can perfectly solve the incompleteness of manual screening features. 

But they need a lot of training data to obtain high precision, that is to say, when the input drug-disease 

association network is too sparse, the method based on deep learning is easy to appear over-fitting. 

The web-based approach captures similar information from different types of biological networks as 

a feature of drugs and diseases. In this method, heterogeneous networks are usually introduced to 

represent different types of biological information, and their similarities are retained in different 

biological networks, so as to obtain unobserved associations between drugs and diseases.  

Attention mechanism is widely used in a variety of deep learning tasks, such as natural language 

processing, image recognition and speech recognition, and has become one of the core technologies 

in the field of deep learning. When processing the information received by the outside world, the 

human brain will focus its attention on the key information of high value and interest, and the attention 

mechanism is inspired by the way the human brain processes information. It can be regarded as a 

combinatorial function, which highlights the influence of key inputs on output by calculating the 

probability distribution of attention. In bioinformatics, attention mechanism is also widely used, such 

as using layer attention mechanism to predict drug-disease association, integrating multiple biological 

relationships for drug-disease association, and so on.  

In this paper, a graph attention heterogeneous network model based on SEnet is proposed to predict 

drug-disease association. The related information of drugs, diseases and genes is collected through 

the biological database, and a benchmark data set is constructed. Through the known drug-disease 

association, drug-gene association, disease-gene association and calculating drug similarity, disease 

similarity and gene similarity, we construct a heterogeneous network to predict drug-disease 

association. Based on this heterogeneous network, we extract information features from the similarity 

network through the graph attention mechanism, and then recalibrate through the channel features. 

Finally, an integrated embedded prediction module is used to predict the unobserved drug-disease 

association. According to the computer simulation experiment, the method proposed in this paper 

achieves 90.2% AUC score and 98.5% ACC score. Compared with other cash methods, the method 

proposed in this paper is better.  

2. Construction of drug-disease heterogeneous network 

2.1 Dataset  

In order to effectively evaluate the model proposed in this paper, this paper collects relevant data 

through biological databases such as CTD[11] and DrugBank[8], and constructs a benchmark data 
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set, including 709 drugs, 5604 diseases, and 1513 proteins.  

It contains 199214 drug-disease edge, drug-protein edge, disease-protein edge.  

2.2 Heterogeneous network construction  

2.2.1 Disease-disease similarity 

The medical subject word identifier of disease can be described as a hierarchical directed acyclic 

graph DAGs.  

In this paper, the DAG structure is used to calculate the semantic similarity of diseases. For disease 

d, DAG (d) = (N (d), E (d)), N (d) denotes the node set of disease d and all ancestors of d, and E (d) 

represents the relationship of all the relationships between diseases in N (d). The semantic 

contribution of a disease d ∈ N (d) to d can be expressed as follows: 

𝐷𝑑(𝑑𝑡) = {
1, 𝑑𝑡 = 𝑑

max⁡{∆ ∗ 𝐷𝑑(𝑑𝑡
′)|𝑑𝑡

′ ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛⁡𝑜𝑓⁡𝑑𝑡}, 𝑑𝑡 ≠ 𝑑
             (1) 

where ∆ is the semantic attenuation factor, according to previous research, here we set it to 0.5, 

and the semantic contribution of disease d to itself has a value of 1. From Eq. 1, we know that the 

main contribution of disease 𝑑𝑡 is determined based on the distance between disease d and disease 

𝑑𝑡, and by summing up the contributions of all the ancestor nodes of disease d, we use Eq. 2 to obtain 

the semantic value of 𝑑𝑡. 

𝐷𝑉(𝑑) = ∑ 𝐷𝑑(𝑑𝑡)𝑑𝑡∈𝑑                              (2) 

Combining Equation 1 and Equation 2, we can get the semantic similarity between disease 𝑑𝑖 and 

disease 𝑑𝑗: 

𝑆𝑖𝑚𝑑𝑖(𝑑𝑖 , 𝑑𝑗) =

∑ (𝐷𝑑𝑖
(𝑑𝑡)+𝐷𝑑𝑗

(𝑑𝑡))
𝑑𝑡∈(𝑁(𝑑𝑖)∩𝑁(𝑑𝑗))

𝐷𝑉(𝑑𝑖)+𝐷𝑉(𝑑𝑗)

                 (3) 

where the contribution of 𝑑𝑡 to 𝑑𝑖 and 𝑑𝑗 is denoted as DV(𝑑𝑖) and DV(𝑑𝑗) respectively 

2.2.2 Drug-drug similarity 

Drugs are special chemicals used by human beings to prevent, treat, or diagnose diseases, or can 

regulate the function of the human body, improve the quality of life, and maintain good health. It 

usually has different characteristics of biological and chemical properties. We can convert drugs into 

many types of feature vectors by their characteristics and calculate drug similarity based on these 

features. In this paper, we download the drug SMILES sequences from DrugBank[8] and convert 

them into topological fingerprints of the drugs, and calculate the similarity between two drugs based 

on the fingerprint loci and Tanimoto similarity. Assuming drug 𝑑𝑟𝑖  and drug 𝑑𝑟𝑗 , the similarity 

between them can be calculated by Equation 4 and Equation 5 

𝑇𝑀 =
𝑑𝑟𝑖𝑑𝑟𝑗

𝑑𝑟𝑖
2+𝑑𝑟𝑗

2−𝑑𝑟𝑖𝑑𝑟𝑗
                              (4) 

𝑆𝑖𝑚𝑑𝑟(𝑑𝑟𝑖 , 𝑑𝑟𝑗) = 1 −
min(𝑇𝑀)

max(𝑇𝑀)−min(𝑇𝑀)
                      (5) 

2.2.3 Gene-gene functional similarity 

Calculating gene-gene functional similarity is the basic work of bioinformatics, which is an 
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important part of life science research. In this paper, we use GO to study the similarity between genes. 

The GO graph uses a directed acyclic graph to represent structured relationships between biological 

terms, as shown in Figure 1. A node in the graph represents a term, and in addition to the root node, 

each node has the possibility of multiple parent nodes and may have multiple children. The depth of 

a node indicates the shortest path between that node and the root node. The closer a node is to the 

root node indicates the more general the term semantics, and conversely, the further it is from the root 

node indicates the more explicit the term semantics. According to previous research, it is believed 

that the deeper the depth of the Lowest Common Ancestor (LCA) between two nodes, the more 

similar they are. 

𝑆𝑖𝑚𝑔𝑒(𝑔𝑖 , 𝑔𝑗) =
2𝐻

𝐷𝑖+𝐷𝑗+2𝐻                            (6) 

where 𝐷𝑖  and 𝐷𝑗  denote the lengths of the shortest paths between 𝑔𝑖  and 𝑔𝑗  to the LCA, 

respectively, and H is the length of the shortest path between the LCA and the root node. 

 

Figure 1: Relationships between some of the nodes in the biological process subgraph of the GO 

2.2.4 Heterogeneous network construction 

After obtaining drug-drug similarity, disease-disease similarity and gene-gene similarity, drug-

disease associations we get from DrugBank[8], and drug-gene associations as well as disease-gene 

associations we get from CTD[11]. In order to better represent the heterogeneous networks, we use a 

parameterized form to represent the heterogeneous networks. Take drug-disease association as an 

example, the drug-disease association is represented as a kind of binary network 𝐴𝑑𝑖𝑑𝑟 ∈ {0,1}𝑁×𝑀, 

where N is the number of drugs and M is the number of diseases. If drug dr is associated with disease 

di, then 𝐴𝑑𝑖,𝑑𝑟 = 1, otherwise 𝐴𝑑𝑖,𝑑𝑟 = 0. Finally, the heterogeneous network model is constructed 

as shown in Equation 7: 

𝐻 = [
𝑆𝑖𝑚𝑑𝑖 𝐴𝑑𝑟𝑑𝑖 𝐴𝑔𝑒𝑑𝑖

𝐴𝑑𝑖𝑑𝑟 𝑆𝑖𝑚𝑑𝑟 𝐴𝑔𝑒𝑑𝑟

𝐴𝑑𝑖𝑔𝑒 𝐴𝑑𝑟𝑔𝑒 𝑆𝑖𝑚𝑔𝑒

]                            (7) 

3. Models and Methods 

In this section, we will formally introduce the SEGAT method for drug-disease association. It 

includes GAT[12] node feature extraction; Senet feature aggregation and enhancement; and drug-

disease association prediction. The workflow of SEGAT is shown in Figure 2. 
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Figure 2: General model architecture 

3.1 Graph attention network 

Graph Attention Network GAT was proposed by Veličković[12] et al. in 2017 and the main idea 

is to apply the attention mechanism to graph structures. The core of GAT is the graph attention layer, 

which takes as input a set of node features ℎ = {ℎ⃗ 1, ℎ⃗ 2, … , ℎ⃗ 𝑁}, ℎ⃗ 𝑖 ∈ ℝ𝐹 as inputs, where N denotes 

the number of nodes and F denotes the node feature dimensions, and then outputs the new node 

feature F^' representations by going through the graph attention layer. After obtaining the new feature 

representation, a shared attention mechanism a: R^(F^' )×R^(F^' )→R is applied to obtain the 

attention coefficients: 

𝑒𝑖,𝑗 = 𝑎(𝑊ℎ⃗ 𝑖 ,𝑊ℎ⃗ 𝑗)                                (8) 

The attention coefficient 𝑒𝑖,𝑗 indicates the importance of node j's features for node i. To make the 

attention coefficients of different nodes more interpretable, they are normalized using softmax. 

𝑎𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑖,𝑗)                              (9) 

After obtaining the normalized attention coefficients, the representation of the neighboring nodes 

is applied to the node and the features of the node are updated. After that, the features of the 

neighboring nodes are averaged by doing a weighting process and activated using a nonlinear function 

σ. 

ℎ⃗ 𝑖
′ = 𝜎 ∑ 𝑎𝑖𝑗𝑊ℎ⃗ 𝑗𝑗∈𝑁𝑖

                              (10) 

From this we can get the features output from the GAT layer. 

3.2 Feature Enhancement 

In this module, we hope to devise a way to enhance the model's focus on important features. We 

capture the contribution of each channel's features to the original signal through self-learning, and 

then enhance important features and suppress unimportant or even useless features based on the 

contribution of each channel to the original signal Chengdu. This method is also known as the 

principle of feature recalibration. The obtained ℎ⃗ 𝑖
′ is subjected to Squeeze operation to compress the 

features in spatial dimension. 

𝑎spatial = 𝐹𝑠𝑞(ℎ⃗ 𝑖
′)                                (11) 
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After learning the importance on the spatial dimension, we learn the importance of the channels 

through the Excitation operation to get the weights between different channels. The formula is shown 

below: 

𝑎𝑐ℎ𝑎𝑛𝑛𝑒𝑙 = 𝐹𝑒𝑥(𝑎spatial,𝑊)                          (12) 

Finally, the SEnet enhancement of the original features is accomplished by weighting the channel 

features through the Scale operation, which treats the output weights of Excitation as an important 

percentage of each channel. 

ℎ = 𝐹𝑠𝑐𝑎𝑙𝑒(ℎ⃗ 𝑖
′, 𝑎𝑐ℎ𝑎𝑛𝑛𝑒𝑙)                           (13) 

3.3 Prediction 

After graph attention and SEnet, we finally obtain the drug-disease embedding vector |𝐻𝑑𝑟
𝐻𝑑𝑖

|. In the 

experiments of this paper, we use a bilinear inner product decoder to construct the association matrix 

between drug-disease. 

𝐻′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐻𝑑𝑟𝑊
′𝐻𝑑𝑖)                          (14) 

where 𝑊′ ∈ 𝑅𝑀×𝑁 is a trainable weight matrix for the association prediction score between drugs 

and diseases determined by the corresponding⁡(𝑖, 𝑗). Each element of 𝐻𝑖,𝑗
′  denotes the association 

score between drug 𝑖 and disease 𝑗. 

4. Experimentation 

4.1 Evaluation Metrics 

In order to objectively and effectively evaluate the accuracy of this experiment, we use ten times 

cross-validation to reduce the errors caused by data problems, and we use several indicators including 

AUC, AUPR, F1 score, and recall rate to evaluate the performance of the model as comprehensively 

as possible. The calculation formula is as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                               (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                (16) 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                            (17) 

Where TP is true positive, indicating correctly predicted drug-disease relationships; FP is false 

positive, indicating incorrectly predicted drug-disease relationships; FN is false negative, indicating 

incorrectly predicted but actually labeled drug-disease relationships; and TN is positive negative, 

indicating correctly predicted unlabeled drug-disease relationships. 

4.2 Analysis of experimental results 

4.2.1 Comparison with other algorithms 

We compare this experiment with other drug-disease association algorithms to demonstrate the 

effectiveness of our experiment. We conduct a comparative experiment between the method of this 

paper and the methods of Kang[13] and Chen[14] on the same dataset. As shown in Table 1, the 

experimental method used in this paper possesses an accuracy rate of 98.5%, which is far superior to 
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other methods, indicating that the method in this paper can more accurately make a better prediction 

of whether a drug can treat a disease. 

Table 1: Comparison of method performance 

Methodology Acc F1 score recall rate 

Kang [12] 0.866 0.3106 0.408 

Chen[13] 0.3476 0.3623 0.3782 

this text 0.9850 0.1989 0.265 

4.2.2 Case Study 

In order to validate the ability of this experiment in discovering new drug-disease associations, 

known drug-disease associations are obtained through biological databases such as Drugbank and 

CTD to train the model of this experiment, which is utilized to predict new drug-disease associations. 

We validated this through approved clinical trial studies and public literature (Table 2). For example, 

Etomidate[15] (Etomidate), a white powdery substance insoluble in water, is one of the commonly 

used drugs for induction of anesthesia and has been in clinical use for 30 years, with a rapid but short-

lived action, fast sleep onset and awakening, and strong depressant effects on the central nervous 

system. Phenytoin[16] (Phenytoin) is mainly used for antiepileptic, antiarrhythmic, by highly 

selective inhibition of the cerebral cortex motor area. It is considered as the drug of choice for the 

treatment of grand mal and partial seizures. 

Table 2: Top ten drug-disease associations predicted in this experiment 

Drug Disease Evidence 

Etomidate Memory Disorders PMID: 20180861 

Phenytoin Dermatomyositis Literature[17] 

Doxorubicin Heart Failure Literature[18] 

Cefadroxil Stevens-Johnson 

Syndrome 

PMID: 25811541 

Bicalutamide Melanoma Literature[19] 

Nifedipine Chemical and Drug 

Induced Liver Injury 

Literature[20] 

Rosiglitazone Obesity Literature[21] 

Cimetidine Hypertension Literature[22] 

Docetaxel Chemical and Drug 

Induced Liver Injury 

Literature[23] 

In addition, to further test the validity of our model, we examined the top five disease candidates 

for Sulfasalazine and the top five drug candidates for HIV, a drug used to treat inflammatory bowel 

disease. Tables 3 and 4 show the results of our experiments, which can be confirmed according to 

some public literature and clinical medical studies. 

Table 3: Top 5 Disease Candidates for Sulfasalazine 

Drug Disease Evidence 

Sulfasalazine Pulmonary Fibrosis Literature[24] 

Carcinoma, Hepatocellular Literature[25] 

Pneumonia Literature[26] 

Coma PMID: 32850263 

Pruritus PubMedID：6146502 
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Table 4: Top 5 Drug Candidates for HIV Infections 

Disease Drug Evidence 

HIV Infections Ethanol Literature[27] 

Maraviroc OMIM:609423 

Dronabinol PMID: 15308739 

Aplaviroc PMID: 15644495 

Terameprocol OMIM:609423 

Based on Table 3 and Table 4, we can see that the present model can help to identify new drug-

disease associations. 

5. Conclusions  

In this paper, we developed a GASEDDA model to discover drug-disease associations. The drug-

disease associations were successfully predicted by combining the graph attention mechanism and 

SEnet attention mechanism through a heterogeneous network consisting of drug-drug similarity, 

disease-disease similarity and gene-gene similarity. From the results, it can be seen that the method 

of this model is superior to other drug-disease association prediction methods. 

In future research, considering that biological network is a huge and interconnected large-scale 

network, we will consider adding more biological attribute networks, such as proteins, drug targets 

and so on. Secondly, although GAT is a powerful graph neural network method that can effectively 

extract the node information in the network, it loses the structural information in the network, and in 

the future, we hope to solve this problem by methods such as graph embedding.    
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