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Abstract: This study aims to explore the application and effectiveness of a geometric 

perspective in teaching linear algebra. Traditional linear algebra education often 

emphasizes algebraic calculations and symbolic derivations, while neglecting the important 

geometric applications of linear algebra. It is crucial to integrate the idea of connecting 

numbers and shapes in linear algebra education, combining concepts such as matrices, 

vectors, with geometric concepts such as planes, lines, and spaces, to help students better 

understand and apply their knowledge of linear algebra. Using a geometric perspective in 

teaching linear algebra can enhance students' learning interest and effectiveness, strengthen 

their spatial imagination and creativity, and assist them in mastering and applying their 

knowledge of linear algebra. This research has certain guiding significance and practical 

value for improving the teaching of linear algebra courses. 

1. Introduction 

Linear algebra is primarily the study of finite-dimensional vector spaces and their algebraic 

structures of linear transformations. In many years of engineering linear algebra education, students 

commonly express that linear algebra is a subject filled with concepts and theorems, abstract and 

difficult to understand, and knowledge that is challenging to grasp. They are unclear about the 

practical applications of linear algebra. The reason for this lies in the abstract nature of linear 

algebra, where many conclusions cannot be concretely visualized. It becomes particularly important 

to handle the relationship between linear algebra knowledge and geometric images. 

In order to establish a teaching philosophy of 'geometry without algebra', and to help students 

develop a concrete and visual understanding of linear algebra, we explore a teaching model that 

combines spatial geometry with linear algebra. This ensures that educational ideas, content, 

methods, means, and models adapt to the progress of the times, enabling students to benefit from 

lifelong learning in the field of linear algebra. 

In the following, we will combine the more abstract content of linear algebra education with the 

integration of numbers and shapes, helping students transform abstract mathematical concepts into 

tangible spatial geometric understanding. The guidance of teachers is indispensable in this process. 

2. Linear dependence and independence 

In teaching, the essence of a definition may not always be clear, such as the concepts of linear 
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dependence and independence in linear algebra. Linear spaces are based on the concepts of linear 

dependence and independence. If these concepts are not understood at their core, it will 

undoubtedly affect students' understanding of linear space knowledge. Therefore, when teaching the 

relationships between vectors, it is necessary to focus on explaining the spatial geometric 

relationships between vectors. 

Definition 1: Let there be a set of n-dimensional vectors 1 2, , m  K . If there exists a non-trivial 

solution where 1 2, , mk k kK
 are not all zero, such that 1 1 2 2 0m mk k k    K , then the vector set 

1 2, , m  K is called linearly dependent; otherwise, it is called linearly independent [1]. 

Definition 2: Given a set of n-dimensional vectors 1 2, , , m   K
, if there exists a set of 

scalars 1 2 3, , mk k k kK
such that 1 1 2 2 m mk k k     K

, then  is called a linear combination of 

1 2, , m  K
, or   can be linearly expressed using 1 2, , m  K [2]. 

The linear dependence of vectors in space can be manifested in several relationships, as shown in 

Figure 1.  

(1) When there is linear dependence, according to the definition, there exist non-zero 

coefficients 1 2,k k such that 1 2 0k k   . Assuming 1k
is not zero, we can express 2 1/k k   . 

Thus, ,   are proportional, and their components are also proportional. For example, if (1,2)  and 
(2, 4)  , the corresponding components of ,   are proportional. Therefore, a and b are linearly 

dependent. This can be illustrated on a graph in Figure 1(1), where the two vectors are col-linear, 

indicating the linear dependence between them.  

(2) When , ,   are linearly dependent, according to the theorem for linear dependence, 

assuming   can be expressed as a linear combination of ,  , we have 1 2k k    . Thus,   is 

generated by the two vectors 1 2,k k  using the parallelogram rule. Consequently, ,  and   lie on 

the same plane, as shown in Figure 1(2).  

(3) When , ,   , and ω are linearly dependent, at least one vector can be expressed as a linear 

combination of the remaining vectors. Assuming that ω can be expressed as a linear combination of 
,   and  , we have 1 2 3k k k      ω, where 3k , and 1 2 3k k k       are arbitrary real 

numbers. Thus, we can write  as a linear combination of α, β, and γ, denoted by ( , , )L    , as 

shown in Figure 1(3). 

(4) For four or more vectors, at least one vector belongs to the subspace generated by the 

remaining vectors, following the same reasoning. 

 

Figure 1: Geometric structure of linear dependence in space   
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3. Solutions of Non-Homogeneous Linear Systems 

In engineering-oriented linear algebra textbooks, we have found that the treatment of the 

structural content of solutions to non-homogeneous linear equations is often overly simplified. 

Either only the theorem is presented without a proof, or there is a proof, but the understanding of 

the essence of the theorem is lacking. Without the aid of visual spatial results, the true essence of 

the theorem cannot be fully understood. 

When teaching the structure of solutions to non-homogeneous linear systems, in addition to 

explaining the structural theorems of non-homogeneous linear equations, the corresponding spatial 

structures of the solutions should be emphasized. The teaching process can consider introducing 

examples first, then summarizing the content of the theorem, and finally presenting the proof of the 

theorem's approach. 

Example 1: In Figure 1, given the line 0 yx , find the solution to 1 yx  

 

Figure 2: The relationship between solutions of a non-homogeneous linear system and the derived 

homogeneous system. 

In Figure 2, let B  be an arbitrary point on the line 1x y  , and let   be the vector 

corresponding to point B, originating from the origin. Point C is another point on the line 0x y  , 

and its corresponding vector is  . Now, let M be a point on the line 1x y   corresponding to the 

vector   , and let be the corresponding solution vector. As point C traverses the entire line 
0x y  , the points to which the vector    points will cover all the points on line 1x y  . 

Therefore, the solution to the non-homogeneous linear system 1x y  will consist of the general 

solution to the corresponding homogeneous system 0x y   and any particular solution   to the 

non-homogeneous system 1x y  . 

Through the figure, we can observe that the solution vector M on line 1x y   provides a full 

understanding of the structure of solutions to the corresponding homogeneous linear system. The 

geometric interpretation of solutions to the homogeneous linear system lies in the set of points on a 

line passing through the origin in a 2D plane. Therefore, all the points on line 0x y   in the figure 

represent the solution set to a 2nd order homogeneous linear system. Meanwhile, all the points on 

line 1x y   correspond to the solution set of a non-homogeneous 2nd order linear system. 

Example 2: Find the solutions of a system of three linear equations 

1 2 3

1 2 3

1 2 3

4 0

4 0

2 0

x x x

x x x

x x x

  

   
     and the 

corresponding non-homogeneous linear equations 

1 2 3

1 2 3

1 2 3

4 4

4 16

2 4

x x x

x x x

x x x

  

   
     . 
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Solution: Simplify the augmented matrix of the non-homogeneous linear equations to row 

echelon form. 
1 1 4 4 1 0 3 0

1 4 1 16 0 1 1 4

1 1 2 4 0 0 0 0

A

   
   

     
       

%

, so

1 3

2 3

3

4

x x

x x

 


   . Set 3x k
, we obtain the general solution of the 

system of equations 

1 3

2 3

3

4

x x

x x

 


    as ( 3, 3,1)TX k   , where k is an arbitrary constant. One particular 

solution of the corresponding non-homogeneous linear equations is 
* (0,4,0)Tk  . We can examine 

the relationship between the solutions of the two sets of equations in the graph. 

 

Figure 3: The relationship between solutions of a non-homogeneous system of three linear 

equations and the corresponding solutions of the associated homogeneous system 

In Figure 3, the points on the line OA represent all the solutions of the homogeneous linear 

equations A. Let α be an arbitrary solution vector on the line OA, and let η* = (0, 4, 0)ᵀ be a 

particular solution of the non-homogeneous linear equations. Then, γ = α + η* corresponds to the 

point C. As the vector α varies over the points on the line OA, the point C will traverse all the points 

on the line BC. These points represent all the solutions corresponding to the set B. Therefore, the 

solutions of the non-homogeneous equations will be the sum of the general solution of the 

homogeneous linear equations and the particular solution of the non-homogeneous equations. 

Through the above two examples, we can clearly understand the relationship between the solutions 

of homogeneous and non-homogeneous linear equations. Therefore, the following summary can be 

made: 

Theorem 1: If the linear equation system AX b  has a solution, then one solution of the 

equation system AX b  plus a solution of its associated homogeneous system is also a solution of 

the equation system AX b . Any solution of the equation system AX b  can be expressed as the 

sum of any particular solution of AX b  and a solution of its associated homogeneous system. 

 

Figure 4: The solution structure of a non-homogeneous linear 
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Figure 5: Illustrating the relationship between a non-homogeneous linear system of equations 

system of equations 

To prove the theorem, let's consider using a graphical method to illustrate it. If AX b  has a 

solution, then its particular solution plus any arbitrary solution α of the associated homogeneous 

system is still a solution of AX b  (as shown in Figure 3). If AX b  has a solution, then any 

solution   of the equation system minus the particular solution γ, i.e.,   , is a solution of the 

associated homogeneous system 0AX  . By using a graphical representation, we can quickly 

understand the structure of solutions for non-homogeneous linear equation systems (as shown in 

Figure 4). Figure 5 reflects the relationship between the solution set of the non-homogeneous 

system and the solution set of the associated homogeneous system, where 0W  represents the 

solution set of 0AX  , and W represents the solution set of AX b .    

4. Gram-Schmidt orthogonal formula 

In engineering linear algebra textbooks, the Gram-Schmidt orthogonal formula is presented by 

providing the Gram-Schmidt orthogonal formula formula without explanation. This leads to 

students being unable to accurately understand the formula and can only memorize it. It would be 

helpful to understand the essence of Gram-Schmidt orthogonal formula by combining it with the 

spatial relationship between vectors. 

The Gram-Schmidt orthogonal formula transforms any basis 1 2, , r  K
of vector space 

( )nV V R into an orthogonal normalized basis. The specific steps are as follows [3]: 

First, take

1 1
1 2 2 1 1

1 1

, , [ , ] [ , ] , 2,3, , .
| | | |

i i i i i i ie e e e e e i n
 

   
 

       K K

Then 1 2, , r  K
 

are a set of pairwise orthogonal bases of space V [3]. It is necessary to have a clear understanding of 

the geometric meaning of the dot product of two vectors before revealing the geometric meaning of 

the Gram-Schmidt formula. For the dot product 1 2[ , ]  of vectors 1 and 2 , its result is a scalar. 

The value of 1 2[ , ]   is the length of the projection OA from vector 2  to vector 1  (as shown in 

Figure 6). 

 
Figure 6                                 Figure 7 

Figure 6: The geometric interpretation of vector dot Product  Figure 7: The geometric 

interpretation of Gram-Schmidt orthogonal formula for 3 vectors  
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In engineering linear algebra textbooks, the Gram-Schmidt's orthogonal formula is presented by  

(1) When 1 1 2 2 2 1 12, , [ , ] .r e e e      
 From Figure 6, first shorten 1  to a length of 1, 

resulting in vector 1 1e 
, which is the projected vector 2 1 1[ , ]e e

 from vector 2  to 1e
. Then 

2 is the vector. It can be seen from the figure that 2  is perpendicular to 1 . 

(2) When 1 1 2 2 2 1 1 3 3 3 1 1 3 2 23, , [ , ] , [ , ] [ , ] .r e e e e e e e              In Figure 7, first normalize 1 , 

point A is the projection point of vector 2  terminal B  onto vector 1e , and the vector is 2 1 1[ , ]e e . 

2  is the vector. Normalize 2  to get 2e , draw a parallel vector through point O  to the endpoint 

C of vector 3
, and draw a perpendicular line in the plane where 1e  and 2e  are located from point 

C  with D  as the foot. Then 1CD e


 , 2CD e


 , draw a perpendicular line from point C to 1e
 with E 

as the foot, and draw a perpendicular line from point C  to 2e
 with F  as the foot. The vector 

3 3 3 1 1 3 2 2[ , ] [ , ]e e e e     
can be obtained. Thus, the linearly independent vector group 1 2 3, ,  

 

is transformed into the vector group 1 1 2 3, ,AB CD   
 

    normalized, resulting in a set of pairwise 

orthogonal unit vectors 1 2 3, ,e e e
. 

5. Conclusion 

Through the introduction of these three examples, it can be clearly seen that the definitions, 

theorems, and some methods in engineering linear algebra have geometric meanings. By 

demonstrating the spatial geometric relationships, one can understand the essence of these problems. 

This greatly helps to reduce the abstractness of textbooks and facilitate students' learning of 

engineering linear algebra. 
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