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Control Chart 

Abstract: Statistical process control is a technique to monitor product or service quality 

timely that ensure stability. It promotes quality assurance, resource optimization, and is 

crucial to informed decision-making. Given the diversification of quality indicators, this 

paper introduces a multivariate EWMA control chart model based on the CRITIC and 

entropy weighting method. This model allows lack of knowledge of variable distributions 

and considers variable correlations, which demonstrates strong sensitivity to slight drifts in 

mean and volatility, even with a non-diagonal covariance matrix. Simulation experiments 

confirm its ability to identify process changes and their types by manipulating the mean 

vector and covariance matrix in five controlled experiments. 

1. Introduction 

Statistical Process Control (SPC) refers to the statistical techniques to assess and monitor various 

stages of a process. It aims at establishing and maintaining the process at an acceptable and stable 

level to ensure that products and services meet specified requirements. By monitoring real-time 

product data and using control charts, SPC can detect process faults promptly and predict potential 

variations, which helps producers optimize production parameters, processes, and technologies to 

ensure product quality, improve efficiency, and reduce costs. Specifically, Multivariate Statistical 

Process Control (MSPC) is necessarily required in a process that contains multiple quality indicators. 

Since its introduction by Dr. Shewhart in the 1920s, Statistical Process Control has evolved. In the 

1930s, Kendrick and Harry Romano proposed mean control charts and range control charts for 

controlling continuous data. Traditional Shewhart control charts include X-R charts [1][2] and X-S 

charts [3], limited to single characteristic controlling. In the 1950s, E.S. Page introduced the 

Cumulative Sum (CUSUM) control chart [4], and Robert A. Ross proposed the Exponentially 

Weighted Moving Average (EWMA) control chart [5][6][7], which demonstrate better sensitivity 

and responsiveness in simultaneous cases. Adaptive control charts [8][9], proposed in the 1970s by 

David D. MacCalister, can automatically adjust control limits according to data changes to adapt to 

different production environments. Khoo [10] proposed using median control charts instead of 
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traditional mean control charts to address the issue of potential outliers or individual exceptional 

values in practical processes. The rapid development of modern manufacturing requires increasingly 

more application of multivariate control chart which is constructed in mainly two ways: first, 

constructing multivariate statistics and monitor according to the distribution of multiple variables, 

such as Hotelling T2 control charts [11][12]; second, applying dimension reduction approaches like 

PCA [13], ICA [14], and weighting methods [15][16]. There have been abundant SPC research 

achievements whereas the following aspects need further research: limited types of multivariate 

control charts, lack of sensitivity to detect subtle changes, high requirements for given information 

of distribution, and incomplete consideration of correlations between variables in existing dimension 

reduction methods.  

In this paper, a new approach for constructing multivariate control charts is proposed. The 

approach involves two stages of dimension reduction to transform multiple indicators process control 

into univariate process: firstly, the CRITIC weighting method and secondly the entropy weighting 

method. Finally, an Exponentially Weighted Moving Average (EWMA) control chart is plotted. The 

innovation of this method lies in considering both the mean level and volatility of variables, as well 

as considering correlations between variables using the CRITIC weighting method. Five sets of 

training and testing control experiment simulations were conducted to validate the proposed approach, 

all demonstrating ideal monitoring sensitivity. 

2. Theory and Method 

2.1 CRITIC Entropy Weighting Method 

The CRITIC weighting method is an objective weighting method [16] proposed by Danae 

Diakoulaki, based on the contrast intensity and confliction between variables. The larger the 

differences among the sample values of a certain indicator are, the more effective the indicator is. In 

other words, larger standard deviation evolves larger corresponding weight. Besides, if the confliction 

between a certain indicator and other indicators is small, i.e., the correlation coefficient is large, it 

indicates that the information reflected by the indicator overlaps with other indicators. Thus, the 

corresponding weight is smaller. The following is the calculation process of the CRITIC weighting 

method. 

Assume that there are 𝑛 samples and 𝑝 detection indicators in a certain process, and the original 

data matrix is: 

𝑋 = (

𝑥11 ⋯ 𝑥1𝑝

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑝

)                              (1) 

In the equation, 𝑥𝑖𝑗 represents the detection value of the 𝑗𝑡ℎ indicator for the 𝑖𝑡ℎ sample. The 

original data is normalized, and the positive and negative indicators are normalized using the 

following methods: 

𝑥𝑖𝑗
′ =

𝑥𝑖𝑗−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, 𝑥𝑖𝑗

′ =
𝑥𝑚𝑎𝑥−𝑥𝑖𝑗

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                        (2) 

Where 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 represent the minimum and maximum values of the sample data in the 

same indicator. The standard deviation of the normalized data for the 𝑗𝑡ℎ indicator is calculated as: 

𝜎𝑗 = √∑ (𝑥𝑖𝑗
′ −�̅�′)

2
𝑛
𝑖=1

𝑛

                               (3) 
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The correlation coefficient between the 𝑖𝑡ℎ and 𝑗𝑡ℎ indicators is calculated as: 

𝑟𝑖𝑗 =
𝐶𝑜𝑣(𝑥𝑖

′,𝑥𝑗
′)

√𝜎𝑖𝜎𝑗

                                  (4) 

Where 𝑥𝑖′ and 𝑥𝑗′ represent the normalized data vectors for the 𝑖𝑡ℎ  column and 𝑗𝑡ℎ  column, 

respectively. Using the correlation coefficient, the confliction between the 𝑗𝑡ℎ indicator and other 

indicators is calculated, and then the information content of the 𝑗𝑡ℎ indicator is obtained using the 

CRITIC weighting method: 

𝐶𝑗 = 𝜎𝑗 ∑ (1 − 𝑟𝑖𝑗)
𝑝
𝑗=1                              (5) 

Finally, the objective weight is calculated as: 

𝑊𝑗
′ =

𝐶𝑗

∑ 𝐶𝑗
𝑝
𝑗=1

                                 (6) 

The entropy method is another objective weighting method, based on the principle that the 

information content is negatively correlated with the probability of an event occurring. Conversely, 

the greater the variability or the uncertainty of an indicator, the more information it contains, and 

therefore, the larger the corresponding weight. The following is the calculation process of the entropy 

method. 

First, normalize the indicators, following the steps described above, to obtain the normalized data 

𝑥𝑖𝑗
′ . Calculate the proportion of the 𝑖𝑡ℎ sample data under the 𝑗𝑡ℎ indicator: 

𝜂𝑖𝑗 =
𝑥𝑖𝑗

′

∑ 𝑥𝑖𝑗
′𝑛

𝑖=1
                               (7) 

Next, calculate the information entropy for the 𝑗𝑡ℎ indicator: 

𝐻𝑗 = −
1

𝑙𝑛𝑝
∑ 𝜂𝑖𝑗 ln(𝜂𝑖𝑗)

𝑝
𝑗=1                         (8) 

Finally, convert to obtain the objective weight: 

𝑊𝑗
′′ =

1−𝐻𝑗

∑ (1−𝐻𝑗)
𝑝
𝑗=1

                              (9) 

In this paper, we combine the CRITIC weighting method and the entropy method to obtain the 

combined weight for the 𝑗𝑡ℎ indicator: 

𝑊𝑗 =
𝑊𝑗′𝑊𝑗

′′

∑ 𝑊𝑗′𝑊𝑗
′′𝑝

𝑗=1

                           (10) 

2.2 EWMA Control Chart 

The principle of the EWMA (Exponentially Weighted Moving Average) control chart is the 

exponential weighted moving average method. Moving average calculates the arithmetic mean of the 

most recent 𝑛 observations, with the latest observation replacing the earliest one. Weighted moving 

average improves upon this by assigning equal weights to each observation within a fixed span, with 

the weights decreasing for previous observations. The EWMA method further refines the weighted 

moving average and was proposed by Robert in 1959 [6]. It considers the fact that newer observations 

reflect more effective information and avoids the need to use all historical data, which would require 

increasing storage space.The construction process of the EWMA control chart is as follows: 

Construct the recursive relationship for the exponentially weighted moving average statistic: 
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𝑍𝑡 = 𝛼𝑍𝑡−1 + (1 − 𝛼)𝑥𝑡                         (11) 

Where 𝑍𝑡 and 𝑍𝑡−1 are the weighted moving average values at time 𝑡 and 𝑡 − 1, respectively, 

𝑍0 is usually set as the target value 𝜇0 when the process is under control, and 𝑥𝑡 is the observation 

at time 𝑡. 𝛼 is the weight, where 0 ≤  𝛼 ≤  1. A smaller 𝛼 gives more influence on the latest 

observation, making it more sensitive to small fluctuations. By using the recursive relationship, we 

find that the current sample has the highest weight, and the weights decrease geometrically for 

previous samples. Specifically, the weight for the first sample is the smallest. 

𝑍𝑡 = 𝛼𝑡𝑍0 + (1 − 𝛼) ∑ 𝛼𝑖𝑥𝑡−𝑖
𝑡−1
𝑖=0                    (12) 

Group the EWMA statistic values into intervals of size 𝑐 and plot them to create the control chart. 

If the standard deviation of the original sample data is denoted as 𝜎, then the standard deviation of 

the EWMA statistic 𝑍𝑡 is calculated as: 

𝜎𝑍𝑡

2 = 𝜎2 (
𝛼

2−𝛼
) [1 − (1 − 𝛼)2𝑡]                      (13) 

According to the 3𝜎 rule of statistical process control, the control center line is 𝜇0, and the upper 

and lower control limits are: 

𝑈𝐶𝐿 = 𝜇0 + 3𝜎𝑍𝑡
, 𝐿𝐶𝐿 = 𝜇0 − 3𝜎𝑍𝑡                   (14) 

3. Controlled Simulations 

3.1 Experiment Settings 

In this paper, 5 simulated controlled experiments were conducted to test the sensitivity of the 

EWMA control chart based on CRITIC and entropy methods in detecting small drifts using Python 

programs. Each experiment had a training set and a test set, both with 1000 samples. The weights for 

dimension reduction were obtained from the training set using CRITIC and entropy methods, and 

then applied to the test set for dimension reduction. Finally, the control charts for the training and test 

sets were plotted on the same graph for comparison. To investigate the sensitivity of the control chart 

construction methods in detecting mean and variance variations, specific settings were made for the 

5 experiments, which are listed below. For ease of experimentation without loss of generality, the 

assumption is that the original sample data in these experiments follows a multivariate normal 

distribution with 5 indicators, as shown in Table 1. 

Table 1: Comparison of training set and test set 

Comparison Mean Covariance Matrix Drift 

1 Different Same, Diagonal Matrices -0.05 

2 Different Same, Non-Diagonal Matrices +0.05 

3 Same Different, Diagonal Matrices +0.5 

4 Same Different, Non-Diagonal Matrices +0.5 

5 Different Different, Diagonal Matrix for Training 

Set, Non-Diagonal Matrix for Test Set 

 

3.2 Experiment Results 

Generate 5 groups of training set samples (Sample 1) and test set samples (Sample 2) randomly 

from a multivariate normal distribution as prescribed data for 5 experiments accordingly. 

In Experiment 1, the range of mean vector elements for Sample 1 was 5 ≤ 𝜇1 ≤ 5.05, while for 
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Sample 2 it was 4.95 ≤ 𝜇2 ≤ 5. A slight decrease of 0.05 in the mean was observed in the test set 

compared to the training set. Both sets had the same covariance matrix, which was diagonal with 

diagonal elements whose range were 0.5 ≤ 𝑐𝑜𝑣 ≤ 1. The control chart in Figure 1 showed that the 

center line centered around 5.03, exhibited consistent fluctuations in the training set data up to the 

1000th sample. However, the test set data on the right side displayed a notable downward trend, 

crossing below the control lower limit near the 1600th sample. This indicates that despite of the 

correlation between different indicators, the control chart construction method is highly sensitive to 

small mean drifts when assuming equal fluctuations. 

 

Figure 1: Control chart of Experiment 1       Figure 2: Control chart of Experiment 2 

In Experiment 2, the range of mean vector elements for Sample 1 was 4.95 ≤ 𝜇1 ≤ 5, while for 

Sample 2 it was 5 ≤ 𝜇2 ≤ 5.05. A slight increase of 0.05 in the mean was observed in the test set 

compared to the training set. Both sets had the same non-diagonal covariance matrix, which was 

diagonal with diagonal elements whose range were 0.5 ≤ 𝑐𝑜𝑣 ≤ 1. The control chart in Figure 2 

showed that the center line centered around 4.96, exhibited consistent fluctuations in the training set 

data up to the 1000th sample. However, the test set data displayed a significant upward trend, crossing 

above the control upper limit near the 1600th and 1700th samples. This suggests that when 

considering the correlation between different indicators, the control chart construction method 

presented demonstrates high sensitivity to small mean drifts under the assumption of equal 

fluctuations. 

 

Figure 3: Control chart of Experiment 3       Figure 4: Control chart of Experiment 4 

In Experiment 3, both samples had the same mean vector with a range of 5 ≤ 𝜇 ≤ 5.1. The 

covariance matrices of the two samples were different but both diagonal matrices. The range of the 

diagonal elements of the covariance matrix for sample 1 was 0.1 ≤ 𝑐𝑜𝑣1 ≤ 0.3, while for Sample 2 

it was 0.6 ≤ 𝑐𝑜𝑣2 ≤ 0.8. This resulted in a slight amplification of the test set's covariance matrix 

compared to the training set. The control chart in Figure 3 showed that the center line centered 

approximately 5.06, exhibited small and uniform fluctuations in the training set data up to the 1000th 

sample. However, the test set data on the right side displayed a significant increase in fluctuations, 
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frequently approaching and crossing the control upper and lower limits, with a crossing below the 

control lower limit near the 1800th sample. It shows that when assuming equal mean values, the 

control chart construction method is highly sensitive to small amplifications in fluctuations despite 

of the correlation between different indicators. 

 

Figure 5: Control chart of Experiment 5 

In Experiment 4, both sets had the same mean vector, with a range of 5 ≤ 𝜇 ≤ 5.1. The covariance 

matrices of the two samples were different and non-diagonal. For Sample 1, the range of the elements 

of the covariance matrix was 0.5 ≤ 𝑐𝑜𝑣1 ≤ 0.6, while for Sample 2 it was 1 ≤ 𝑐𝑜𝑣2 ≤ 1.1. This 

resulted in a slight amplification of the diagonal elements of the test set's covariance matrix compared 

to the training set. The control chart in Figure 4 showed that the center line centered approximately 

5.06, exhibited small and uniform fluctuations in the training set data up to the 1000th sample. 

However, the test set data displayed a significant increase in fluctuations, frequently approaching and 

crossing the control upper and lower limits, with a crossing below the control lower limit near the 

1200th sample. It can be concluded that given the correlation between different indicators, this control 

chart construction method is still highly sensitivity to small amplifications in fluctuations under the 

assumption of equal mean values. 

In Experiment 5, the range of mean vector elements in Sample 1 was 5 ≤ 𝜇1 ≤ 5.05, while for 

Sample 2 it was 5.1 ≤ 𝜇2 ≤ 5.15. This caused a slight upward drift of 0.1 in the test set mean 

compared to the training set. Both of covariance matrix elements in Sample 1 and 2 had a range of 

0.5 ≤ 𝑐𝑜𝑣1 ≤ 1. Whereas, Sample 1 had a diagonal covariance matrix while Sample 2 had a non-

diagonal covariance matrix. The control chart in Figure 5 showed that the center line initially centered 

around 5, exhibited consistent fluctuations in the training set data up to the 1000th sample. Yet the 

test set data displayed a significant upward trend, causing the center line to drift towards 5.1. 

Additionally, noticeable amplification in fluctuation magnitude was observed with the test set data 

crossing above the control upper limit near the 1600th sample. It generates that the control chart 

construction method is highly sensitive to small mean drifts and amplifications in fluctuations in light 

of the correlation between different indicators. 

4. Conclusions 

Considering the complexity of production processes and the growing demand for quality control 

of multi-indicator variables, this paper proposes a combined weighting method using CRITIC and 

entropy for dimension reduction in multivariate EWMA control charts. Through 5 sets of simulation 

experiments, the advantages of this approach turn out as follows: 1) Sensitivity to small variations in 

mean and volatility; 2) Consideration of correlations between indicators, maximizing information 

representation; 3) Free of knowledge of variable distributions being allowed, facilitating practical 

application. However, there is still room for further improvement. Future research can explore: 1) 

Create additional indicators with superior effectiveness to assess importance of different variables; 2) 

25



Explore non-linear dimension reduction methods incorporating indicator importance and 

relationships.  
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