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Abstract: This paper introduces an improved YOLOv8-based algorithm, Yolo-Rebar, 

designed to address the challenges of intelligent rebar counting in construction engineering. 

By integrating SPDConv to replace traditional convolution for downsampling, and 

combining bi-directional feature pyramid networks (Bi-PAN-FPN), internal intersection 

over union (Inner-IoU) evaluation strategy, and Dynamic Head component, Yolo-Rebar 

optimizes the network structure and inference process, significantly reducing computational 

load and parameter count while maintaining a high detection accuracy (mAP of 0.985). 

Maintaining a low computational demand (29.9 GFLOPs) and a moderate model size (27.1 

MB), Yolo-Rebar outperforms Yolov5s and Yolov8s models in detection accuracy by 1.5% 

and 0.8% respectively, and compared to Yolov3-app and Yolov8m models, it requires lower 

computational resources while maintaining high accuracy. Empirical results demonstrate 

that Yolo-Rebar exhibits remarkable robustness and precision in complex construction 

environments, such as varying lighting conditions, rebar stacking, and occlusions. This 

research not only enhances the efficiency and accuracy of material acceptance in 

construction engineering but also provides a new direction for the further development of 

deep learning technology in industrial applications. 

1. Introduction 

In construction engineering of concrete structures, the quantity of threaded steel entering the 

construction site is enormous. Material acceptance at the site, as the first link in construction, directly 

affects the speed and quality of infrastructure development. However, most construction sites still 

rely on manual counting for threaded steel quantity acceptance. Manual counting is inefficient, labor-

intensive for workers, prone to visual fatigue, and often leads to inaccuracies. In recent years, with 

the rapid development of deep learning technology, object detection has made significant progress in 

the field of computer vision and has been widely applied in various fields, including but not limited 

to autonomous driving[1], security surveillance[2], and smart homes[3]. 

Currently, deep learning has become the mainstream method in the field of object detection, 

achieving significant results on large-scale datasets. Zhao[4] et al. used median filtering for denoising, 

improved OTSU algorithm and Sabel operator, and center aggregation algorithm for edge information 

extraction and segmentation, and frame-by-frame counting of images, achieving an accuracy of 96%. 

GHAZALI[5] et al. proposed a method to count using image contours, employing Gaussian blur and 
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morphological closing for image preprocessing, combined with Hough transform, LoG, and 

morphological operations to create contours of rebar, and then calculated the number of different 

contours to obtain the count of steel tubes. This method accurately counts circular and rectangular 

steel tubes. Shin Y[6] et al. used a network combining CNN and homography for estimating 

dimensions and counting rebar end images. Fan Z[7] et al. proposed a CNN-DC convolutional network 

framework, using CNN for candidate center point detection, followed by distance clustering to cluster 

candidate center points and locate the center of rebars, ultimately achieving 99.76% accuracy. Li[8] et 

al. improved the precision of rebar end face recognition in the YOLOv3 framework by adding FPN 

layers, introducing IoU loss, and Focal loss. Zheng[9] et al. improved the YOLOv5 model by 

introducing the CA attention mechanism and SD_IoU Loss function, effectively solving the problem 

of dense and sticky bundled rebar recognition, achieving an average accuracy of 97.9% on their 

custom dataset. Li[10] et al., in drone recognition tasks, modified the backbone and neck network of 

YOLOv8, borrowing the idea of Bi-FAN-FPN, adding downsampling in FPN, and replacing some 

C2f modules with GhostblockV2 to reduce information loss due to long-distance transmission and 

significantly decrease the model parameter count. They used WiseIoU loss as the bounding box 

regression loss. Their model surpassed the original in both accuracy and speed on the public dataset 

VisDrone2019. 

This paper proposes a rebar end face image detection network model (Yolo-Rebar) based on the 

Yolov8 model, combined with SPDConv, Bi FPN, Inner-IoU, Dynamic Head, and other technologies. 

This model significantly improves average precision while maintaining a similar volume, 

demonstrating great potential in practical engineering applications. 

2. Model Improvement and Optimization 

2.1 Improved Backbone Network 

2.1.1 Adopting SPDConv in Place of Conv 

In YOLOv8, the Conv module effectively extracts and transforms the information of input features 

through the combination of convolution, batch normalization, and SiLU activation function. The 

structure of the Conv module is illustrated as shown in the figure 1 below: 

Conv = Conv 2d BN 2d SiLU+ +
 

Figure 1: Yolov8 Standard Conv Module Structure Diagram 

However, when processing small object detection, the standard Conv Module may lead to 

information loss due to reducing spatial dimensions. This can negatively impact recognition accuracy. 

To address this issue, we introduce SPDConv to replace Conv for feature extraction. 

SPDConv (Space-to-depth Conv) is an innovative Convolutional Neural Network (CNN) module 

designed specifically for handling low-resolution images and small objects (figure 2)[11]. 

 

Figure 2: The implementation schematic of SPDConv[11]  
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2.1.2 Adopting SPPF-LSKA in Place of SPPF 

Spatial Pyramid Pooling (SPP) [12]is a technique used in deep learning to address varying sizes of 

input images. The SPP structure is illustrated in Figure 3: implemented by adding a pooling layer 

after the convolutional layer, this layer divides the feature map into different regions and performs 

pooling (typically max pooling) on each region, generating fixed-length outputs to ensure consistency 

regardless of the input feature map's size. In YOLOv5, the incorporation of the SPP module greatly 

enhances the network's feature extraction capabilities. It not only enables YOLOv5 to handle images 

of different sizes but also improves the model's adaptability to size variations. 

Conv

MaxPool2d

MaxPool2d

MaxPool2d

Concat Conv

 

Figure 3: Yolov5 SPP Module Structure Diagram 

YOLOv8 introduces the SPPF module (Spatial Pyramid Pooling - Fast), an optimization of the 

traditional Spatial Pyramid Pooling (SPP). The structural diagram is depicted in Figure 4: SPPF 

significantly reduces computational complexity by employing efficient pooling strategies, including 

a reduction in the number of pooling layers and the consolidation of multiple pooling operations.  

Conv MaxPool2d MaxPool2d MaxPool2d

Concat Conv

 

Figure 4: Yolov5 SPPF Module Structure Diagram 

To further enhance spatial awareness and improve computational efficiency, this paper introduces 

Large Separable Kernel Attention (LSKA) into the SPPF structure. LSKA[13] is an attention 

mechanism based on a large-scale separable kernel, further optimizing the Large Kernel Attention[14] 

(LKA). The detailed illustration of LSKA is shown in Figure 5.  

2.2 Improved Neck Network 

YOLOv8 utilizes the PAN-FPN structure, based on PANet[15], to enhance the feature pyramid of 

FPN[16] and improve semantic capabilities. However, PAN-FPN still needs improvements in small 

object detection. To address this, Bi-PAN-FPN[17] has been introduced. It improves network structure 

and adds inter-layer connections, enhancing feature fusion efficiency. This compensates for the 

limitations of FPN and PANet, thereby improving detection performance for small objects. 

In this paper, building upon Bi-PAN-FPN, the fusion of the P2 and P3 layers with the last layer of 

FPN is performed to enhance the utilization of large-sized feature information. Additionally, the 

original concatenation module in YOLOv8 is replaced with the BiFPN (Bi-directional Feature 

Pyramid Network) module. Compared to the Concat module, the BiFPN module achieves a more 
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complex feature fusion through operations such as weight learning and normalization. Considering 

the increase in computational load, the output channel number in the neck network is uniformly set 

to 256 in this study. Experimental results demonstrate that this network model can maintain average 

precision in recognition even with a significant reduction in computational parameters. The 

computation process of the BiFPN module is as follows: 

Assuming there are N input feature tensors forming the input list
 1 2, ,..., NX x x x

, along with an 

equally long fusion weight vector
 1 2, ,..., NW w w w

where iw
is a learnable parameter, the BiFPN 

module performs the following computation: 

Firstly, for each weight iw
, the ReLU function is applied to ensure its non-negativity: 

Re ( ) max(0, )i iLU w w
                              (1) 

Then, these non-negative weights are normalized, undergoing weight normalization: 

1

N

ii

W
W

w





´

                                  (2) 

Finally, the weighted sum is computed by multiplying each input feature tensor with its 

corresponding weight and then summing them all: 

1

N

i ii
Y w x


  ´

                                 (3) 

2.3 Improved Head Network 

This paper introduces DyHead[18](Dynamic Head) . as the detection head of the network. DyHead 

provides a unified object detection framework that significantly enhances the representation 

capability of the object detection head by combining various self-attention mechanisms, without 

incurring additional computational costs. Details of DyHead are illustrated in Figure 5. 

Typically, the formula for self-attention mechanisms is often represented as shown in Equation 

(4): 

( ) ( ) , L S CW F F F F R                               (4) 

where ( )   is an attention function, and L, S, C represent the Level, Scale, and Channel 

dimensions, respectively. In DyHead, to overcome the high computational cost associated with 

directly operating on these three dimensions, a decomposition strategy is employed. This strategy 

decomposes operations on the L, S, and C dimensions, and through experimentation, it was found 

that the decomposed operations precisely correspond to the attention in three aspects: Scale-aware, 

Spatial-aware, and Task-aware. Subsequently, these operations are recombined in a cascading manner. 

This approach significantly improves attention in each dimension while substantially reducing 

computational complexity. This method effectively optimizes the efficiency and performance of the 

self-attention mechanism. 

( ) ( ( ( ) ) )C S LW F F F F F     
                        (5) 

Here, 
( )C 

,
( )S 

,
( )L 

 respectively, represent attention functions applied to the L, S, and C 

dimensions: Scale-aware Attention, Spatial-aware Attention, Task-aware Attention. 
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2.4 Improved Loss Function 

Yolov8's bounding box (bbox) regression uses the Complete Intersection over Union (CIoU) as 

the loss function. The calculation formula for CIoU loss is as follows: 

2

2

( , )gt

CIoU

b b
L IoU

c


    

                          (6) 

Where IoU is the Intersection over Union, 
2 ( , )gtb b is the Euclidean distance between the 

predicted bounding box b and the real bounding box(
gtb )'s center point,  c is the diagonal length of 

the minimum enclosing region containing both bounding boxes, and   is a weight parameter used 

to balance the influence of aspect ratio.  

CIoU is an improvement over traditional Intersection over Union (IoU). It not only considers the 

overlapping region of bounding boxes but also takes into account the distance between the center 

points of the bounding boxes and the similarity of their aspect ratios. This gives it a more 

comprehensive measure of similarity. However, CIoU does not consider the rationality of IoU loss 

itself, which to some extent determines the quality of the detection results. To address this issue, this 

paper uses Inner-CIoU to replace CIoU. 

Inner-CIoU loss can be obtained through IoU, CIoUL
and 

innerIoU where:  

inner

inner CIoUL CIoU L IoU IoU  ‐
                      (7) 

Inner-IoU[19]. Introduces auxiliary bounding boxes to calculate IoU loss. It introduces a scale factor 

(ratio) to control the size of the auxiliary bounding boxes. By distinguishing different regression 

samples and using auxiliary bounding boxes of different scales to calculate the loss, it accelerates the 

regression process of bounding boxes. The calculation formula is as follows: 

* * * *
, ,

2 2 2 2

gt gt gt gt
gt gt gt gt gt gt gt gt

l c r c t c b c

w ratio w ratio h ratio h ratio
b x b x b y b y       ，

    
(8) 

* * * *
, ,

2 2 2 2
l c r c t c b c

w ratio w ratio h ratio h ratio
b x b x b y b y       ，

           
(9) 

Where 
( , )gt gt

c cx y
 represents the center point of the ground truth box (GT Box) and the center 

point of the inner ground truth box, 
( , )c cx y

 represents the center point of the anchor point and the 

center point of the inner anchor point. The width and height of the ground truth box are 
gtw and 

gth

, and the width and height of the anchor point are w and h. 
gt

lb
,

gt

rb
,

gt

tb
,

gt

bb
 respectively, represent 

the left, right, upper, and lower boundaries of the ground truth box, calculated from the center point 

of the ground truth box and the scaling factor ratio. lb
, rb

, tb
, bb

respectively, represent the left, right, 

upper, and lower boundaries of the anchor point, calculated from the center point of the anchor point 

and the scaling factor ratio. 

int (min( , ) max( , ))*(min( , ) max( max( , ))gt gt gt gt gt

r r l l b b t t ter b b b b b b b b b   
        (10) 

2 2( * )*( ) ( * )*( ) intgt gtunion w h ratio w h ratio er                      (11) 
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intinner er
IoU

union


                              (12) 

Where inter represents the intersection area of the GT box and the anchor box, and union is the 

union area of the GT box and the anchor box. 

2.5 Improved Network Structure 

Thus, the improved reinforcement bar end-face image detection model based on YOLOv8 is 

shown in Figure 5. Compared to the original YOLOv8, improvements have been made in the 

backbone, neck, head, and loss functions, with specific changes indicated by the graphical labels in 

Figure 5. 

 

Figure 5: Improved network architecture for reinforcement bar end-face image detection based on 

YOLOv8 

3. Experiment 

3.1 Experimental Environment 

The computer operating system used for this experiment is Ubuntu 18.04.5 LTS, with a 64-bit 

system. The processor model is Intel® Xeon(R) Platinum 8176 CPU @ 2.10GHz × 112. The device 

has a memory capacity of 187.5GB. There are two NVIDIA 2080ti GPUs, each with 11GB of VRAM, 

totaling 22GB of GPU memory. The GPU driver version is 510.108.03, and the CUDA version is 

11.6. The YOLOv8 model is implemented using the PyTorch deep learning framework, with torch 

version 2.0. 
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3.2 Dataset and Its Preprocessing 

This study utilized the 'Smart Inventory - Reinforcement Steel Artificial Intelligence Identification 

Competition' provided thread steel dataset and a portion of self-annotated datasets for experimental 

validation, totaling 450 images. The selected dataset covers various scenarios of reinforcement bar 

end-face images, including different lighting conditions, irregular arrangements of steel bars, voids, 

mutual occlusions, and stacking, to ensure that the experiments cover various challenges in real-world 

reinforcement detection. Some examples of the data are shown in the Figure 6. 

 

 

Figure 6: Examples of images from the reinforcement bar dataset 

The dataset contains only one category, which is the steel reinforcement. The entire dataset was 

divided into a training set (200 images), a validation set (50 images), and a test set (200 images). The 

important parameters for the training process are shown in Table . Considering the limited size of the 

training dataset, to ensure the model's generalization and robustness, this paper employed data 

augmentation techniques such as Mosaic, flipping, and translation during the training process to 

expand the dataset. The specific configuration parameters for data augmentation are shown in Table.1. 

Table 1: Table of Training Parameter Settings 

Parameter Value 

Epochs 100 

Batch Size 16 

Optimizer SGD 

NMS IoU 0.7 

Initial Learning Rate 1 × 10-2 

Final Learning Rate 1 × 10-2 

Momentum 0.973 

Weight Decay 5 × 10-4 

Image Scale 0.5 

Image Flip Left-Right 0.5 

Mosaic 1.0 

Ratio(Inner IoU) 1.2 

Close Mosaic Last 10 epochs 

3.3 Model Evaluation Indices 

This paper will use mAP (mean Average Precision) as a reference metric for the network's 

performance, which is a widely adopted evaluation method in the field of object detection. mAP 

evaluates the overall performance of the model by considering both precision and recall. Specifically, 

it calculates the average precision (AP) for each class, which is the area under the precision-recall 

curve (P-R curve), and then takes the average of these AP values to obtain mAP. The calculation 
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formula is as follows: 

1

1 n

ii
mAP AP

n 
 

                              (13) 

Where n is the number of categories in the dataset. In this paper, the dataset contains only one 

category, which is steel reinforcement, so mAP=AP. The formulas for precision and recall are as 

follows: 

TP
P

TP FP


                                 (14) 

TP
R

TP FN


                                 (15) 

In equations (14) and (15), TP represents true positives, FP represents false positives, and FN 

represents false negatives. 

3.4 Ablation Experiment 

The reinforcement bar end-face image detection model designed in this paper primarily improves 

the neck, backbone, and head of the baseline model (Yolov8-s), and replaces CIoU with Inner-CIoU 

in the final loss function as the bounding box regression loss. Through conducting ablation 

experiments to systematically analyze the improvement of each module on model performance, the 

average precision mean mAP is used as the evaluation metric in this experiment. 

Table 2: Results of ablation experiments 

Model 

Comput-

ational 

/GFLOPs 

Weight/

MB 

Introduci-ng 

SPDCon-v 

Introduci-ng 

SPPF-LSKA 

Modifyi-ng 

the feature 

pyramid 

Introduc-eng 

DyHead 

detection 

head 

Mod-

fying the 

loss 

funct-ion 

mAP 

Baseline 28.8 22.5 × × × × × 0.977 

Model 1 31.6 27.0 √ × × × × 0.978 

Model 2 29.7 24.7 × √ × × × 0.982 

Model 3 25.4 15.0 × × √ × × 0.977 

Model 4 28.5 22.0 × × × √ × 0.981 

Model 5 28.8 22.5 × × × × √ 0.979 

Yolo-

Rebar 
29.9 27.1 √ √ √ √ √ 0.985 

Through comparative analysis using ablation experiments, we found that each module 

implemented in this paper positively impacts the baseline model. The optimized Yolo-Rebar model 

size increased by 4.6MB compared to the original, but its accuracy improved by 0.8%, with only a 

1.1 GFLOPs increase in computational complexity. 

3.5 Experimental Curve Comparison 

This paper trained the baseline model (Yolov8s) and the proposed optimized model (Yolo-Rebar) 

on the rebar dataset according to the parameters set in Table . During the statistical detection process, 

the model's weights and mAP (mean average precision) metrics were recorded. The comparison of 

loss curves for both models on the training and validation sets is shown in figure 7 (a), (b). From the 
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curves, it can be observed that the Inner-ICoU used in this paper has lower loss values on both the 

training and validation sets, and the loss curves are smoother. 

      
Training set loss curve       validation set loss curve 

Figure 7: Model training curve loss function compariso 

3.6 Deep Learning Model Performance Comparison Experiment 

Based on the different anchor generation mechanisms, deep learning methods in the field of object 

detection are mainly divided into one-stage methods and two-stage methods. This paper selected the 

well-known Faster R-CNN in the two-stage object detection domain and the leading YOLO series 

frameworks in the one-stage object detection domain, including YOLOv3-SPP, YOLOv5s, 

YOLOv8s. To highlight the superiority of the proposed model, YOLOv8m was also chosen for 

comparison in the experiments. From, it can be seen that YOLOv8-Rebar achieves the highest 

detection accuracy (mAP of 0.985) while maintaining low computational complexity (29.9 GFLOPs) 

and moderate model size (27.1 MB). Compared to other models such as YOLOv3-APP and 

YOLOv8m, which also demonstrate high detection accuracy, YOLOv8-Rebar achieves a balance 

between accuracy, computational complexity, and model size. In comparison to YOLOv5s and 

YOLOv8s, although YOLOv8-Rebar has a slightly higher model size, it outperforms them in average 

precision by 1.5% and 0.8%, respectively. This demonstrates that YOLOv8-Rebar exhibits excellent 

overall performance in terms of accuracy, computational complexity, and model size" (See table 3). 

Table 3: The experimental results of multiple models are compared 

Model 
Computational 

/GFLOPs 
Weight/MB mAP 

Faster-RCNN - 318 0.727 

Yolov3-app 284.2 209.9 0.984 

Yolov5s 24.2 18.5 0.970 

Yolov8s 28.8 22.5 0.977 

Yolov8m 79.1 52.0 0.983 

Yolov8-Rebar 29.9 27.1 0.985 

3.7 Analysis of Model Test Results 

To visually demonstrate the performance of Yolo-Rebar, the trained model is tested on the test set 

and compared with the baseline model Yolov8s. The results are shown in Figure . In Figure , the light 

blue boxes represent the detection results of the baseline model Yolov8s, and the red boxes represent 

the detection results of Yolo-Rebar. The red arrows in Yolov8s indicate cases of misidentification 

and missed detection during the detection process, while in Yolo-Rebar, the recognition results in the 

same areas are good, with almost no cases of missed or misidentified objects. Additionally, in 
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situations with densely distributed and stacked rebars, Yolo-Rebar can accurately detect the positions 

of rebars. 

4. Conclusion 

Yolo-Rebar algorithm in this paper effectively improves the existing YOLOv8 algorithm, 

especially for the detection of rebar end faces in complex scenarios. Integrated with technologies such 

as SPDConv, Bi-PAN-FPN, Inner-IoU, and Dynamic Head, Yolo-Rebar demonstrates outstanding 

performance in handling high-density and multi-layered stacked rebars. This algorithm significantly 

reduces computational resource consumption while maintaining high processing speed, making it 

suitable for real-time detection applications. Yolo-Rebar holds significant value for the automation 

and accuracy improvement of rebar detection in construction engineering, showcasing the potential 

of deep learning in industrial applications. 

 

Figure 8: Results of model testing 
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