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Abstract: For the existing 3D small object detection is prone to false detection and missed 

detection and other deficiencies. A 3D object detection method based on multi-modal 

feature fusion is proposed. Firstly, a feature extraction module is designed. The input image 

data is down-sampled through the image feature extraction network, and the input point 

cloud data is sampled and grouped through the point cloud feature extraction network to 

obtain the feature information at different scales. Secondly, a multi-modal feature fusion 

module is constructed to realize the point correspondence between point cloud features and 

image features by projection operation, and then the image features and point cloud features 

are splicing and fused to generate the final point cloud features to compensate the deficiency 

of single modal feature information. The experimental results show that compared with the 

existing algorithms, the algorithm in this paper improves the average detection accuracy of 

small object by 2.03%. 

1. Introduction 

3D object detection is a significant research area in the field of computer vision, with extensive 

applications in domains such as autonomous driving, robotics, medical research, and security systems 
[1]. According to the different input data modalities, 3D object detection can be divided into two 

detection methods, image-based and point cloud-based [2]. Image-based 3D object detection utilizes 

2D object detectors to generate 2D bounding boxes on images. Then, by combining geometric 

principles, the method derives 3D bounding boxes for the detected objects. In 2019, Garrick Brazil et 

al. proposed the M3D-RPN method, which analyzes and processes the input data to obtain dense 3D 

candidate boxes using prior information about the target scene. The method then utilizes depth-aware 

convolutional layers to learn spatially aware features and predict 3D object boxes [3]. However, this 

method overlooks the differences between occluded objects and non-occluded objects, leading to 

suboptimal detection accuracy. In 2021, Zhang et al. proposed the MonoFlex. This method introduces 

an edge fusion module to extract the position coordinates and angle parameters of the four boundaries 

from the feature map and performs offset processing on them. Then, it utilizes convolutional layers 

to learn the features of the objects. Finally, the boundary parameters are fused with the features to 

achieve object detection [4]. In 3D object detection, images can provide rich information such as 

appearance, color, and texture. However, they lack depth information, which makes it difficult to 

determine the pose, size, and dimensions of the objects. 

3D object detection based on point clouds utilizes laser radar to scan real-world scenes and 

generate a large collection of points. Through a 3D object detection network, object features are 

extracted, resulting in 3D bounding boxes. In 2016, Qi et al. first proposed the PointNet network, 
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which introduced spatial transformation networks and MaxPooling to address the rotation invariance 

and unorderedness issues in point clouds, enabling effective detection of objects in point cloud data 
[5]. In 2017, Qi et al. further developed the PointNet++ algorithm, which introduced a multi-scale 

feature extraction structure. The algorithm starts by using the farthest point sampling (FPS) algorithm 

to select a subset of key points from the point cloud. For each selected key point, a local region is 

defined, and the k nearest neighbors within that region are grouped together. These k points are then 

fed into the core PointNet network for feature extraction, thereby improving the accuracy of 3D object 

detection [6]. In 2018, Yan et al. proposed the SECOND network, which replaced regular 3D 

convolutions with sparse 3D convolutions to improve network training speed. They also introduced 

an orientation regression loss to enhance orientation estimation performance. However, when the 

number of points and voxels exceeds the capacity, they can be discarded, resulting in feature loss and 

impacting the performance of object detection [7]. These 3D object detection methods are able to 

preserve the spatial features of objects in 3D space quite well. However, they lack information such 

as color and texture, which results in suboptimal precision in object detection [8]. 

Therefore, a multi-modal feature fusion-based 3D object detection approach is proposed, which 

integrates the depth information and contour information of point clouds with the color and texture 

information of images. This approach can address the issues of missed detections caused by sparse 

point cloud data for small objects and false detections caused by the absence of features in a single 

modality, thereby improving the detection accuracy. The main contributions of this paper can be 

summarized as follows:  

1) The input images and point cloud data are processed separately by image and point cloud feature 

extraction networks to extract features at different scales, thereby increasing the receptive field and 

improving the detection performance for small objects. 

2) By using projection operations, the coordinates of image and point cloud features are aligned. 

Then, through concatenation fusion, the features are combined to compensate for the limitations of 

single-modal data, augmenting the feature information of the objects and enhancing the performance 

of 3D object detection. 

2. Proposed algorithm 

The diagram of the proposed algorithm is shown in Figure 1, which mainly consists of three 

modules, feature extraction module, feature fusion module, and detection heads. First, the image data 

and point cloud data are separately input into the feature extraction module. The image data is 

processed by an image feature extraction network to perform down-sampling and extract image 

features. Simultaneously, the point cloud data is processed by a point cloud feature extraction network 

to perform sampling and grouping operations for extracting point cloud features. Next, the image 

features and point cloud features are fed into the multi-modal feature fusion module. By using a 

projection operation, the point cloud features are aligned with the corresponding coordinates of the 

image features. Then, the image features and point cloud features are concatenated and fused together 

to generate the final fused point cloud features. Finally, the fused point cloud features are input into 

the detection head, where an RPN network and an ROI Pooling module generate object detection 

boxes, completing the 3D object detection process. 
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Figure 1: Algorithm diagram 

2.1 Image feature extraction  

The image data with dimensions of H×W×C is fed into the image feature extraction network. To 

enhance the detection performance for small objects, four lightweight convolutional blocks are 

utilized. Each block consists of a 3×3 convolutional layer, a batch normalization layer (BN), a ReLU 

activation function, and a max pooling layer (MaxPool). These operations down-sample the image 

by a factor of two and extract features, enlarging the receptive field to enable subsequent 

convolutional kernels to learn more comprehensive feature information. After four down-sampling 

operations, image features at different scales 𝐹𝑖(i=1,2,3,4) are obtained, providing color, texture, and 

other feature information at various scales for 3D object detection, as shown in Figure 1. 

2.2 Point cloud feature extraction 

The point cloud data with dimensions of H×W×D×C is fed into the point cloud feature extraction 

network. To capture local features of 3D feature maps at different scales, four SA (Sampling and 

Aggregation) modules are employed. Each SA module consists of a random sampling layer, a 

grouping layer, and a feature extraction layer. First, the random sampling layer uses FPS (farthest 

point sampling) method to randomly select n center points from the input point cloud. Then, these 

center points are passed to the grouping layer, where points within a radius of r from each center point 

are grouped together using the ball query method. Finally, the n groups are input into the feature 

extraction layer, where the features of the center points are extracted as global features for each group 

using MLP (multi-layer perceptron) and max pooling layers. The extracted features are concatenated 

to obtain the point cloud feature 𝑃1. As the number of SA modules increases, the number of selected 

center points decreases, but each center point contains more feature information. After four SA 

modules, point cloud features 𝑃𝑖(i=1, 2, 3, 4) are obtained at different scales. 

2.3 Multi-modal feature fusion 

Due to the information loss caused by feature extraction from a single modality, this paper 

constructs a multi-modal feature fusion module, including four projection layers and a feature fusion 

layer. The point cloud features extracted initially are projected to generate image features, establishing 

correspondences between point clouds and images. Then, in the feature fusion layer, the point cloud 
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features are concatenated and fused with the image features, leveraging the information from the 

image features at different scales to enhance the point cloud features. This process results in fused 

point cloud features at four different scales. Finally, the fused point cloud features are obtained by 

concatenating and fusing the features. 

2.3.1 Feature projection 

The extracted image features 𝐹𝑖 and point cloud features 𝑃𝑖 are separately input into the multi-

modal feature fusion module. First, the point cloud features 𝑃𝑖 are passed through the projection 

module, where they are transformed into projected image features using the coordinate transformation 

formula. The projection relationship is used to determine the correspondence between the point cloud 

features 𝑃𝑖 and the image features Fi at different scales. For a point 𝑃(XW,YW,ZW) in the point 

cloud, its corresponding point 𝑃′(X,Y) in the projected image is calculated using the following 

formula.  

(𝑋, 𝑌, 1) = 𝑈[𝑅(𝑋𝑊, 𝑌𝑊, 𝑍𝑊) + 𝑇               (1)  

Where R denotes the rotation matrix, T denotes the translation vector, U denotes the camera 

intrinsic matrix, and 1 is meaningless in the projection space. 

Then, the sigmoid function is used to calculate weights for each point in the image, aiming to 

enhance the effectiveness of the image features. The formula is as follows: 

𝐹𝑓1 = 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐹1)                          (2) 

Where 𝐹1 denotes the image features, 𝑓𝑠𝑖𝑔𝑚𝑜𝑖𝑑 denotes the weighted calculation of the image 

features, and 𝐹𝑓1 denotes the image features after weighting. 

2.3.2 Feature fusion 

Due to the issue of missing feature information in a single modality data, different scales of point 

cloud features and image features are fused through concatenation to compensate for the limitations 

of a single modality data and enhance the feature information of the objects. As shown in Figure 2. 
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Figure 2: Feature Fusion Module 

First, the weighted image feature Ff1 and the point cloud feature 𝑃1 are separately input into the 

fusion module. To achieve feature fusion, the feature representation of each point in the point cloud 

feature 𝑃1 is denoted as (𝑥1, 𝑦1, 𝑧1, 𝑟1, 𝑔1, 𝑏1), and the feature representation of each point in the 

image feature 𝐹𝑓1 is denoted as (𝑥2, 𝑦2, 𝑧2, 𝑟2, 𝑔2, 𝑏2). Since the image feature 𝐹𝑓1 lacks feature 

information in the z-axis direction, an identity mapping operation is applied to fill the missing z-axis 

feature information z2 with zeros. Then, the feature information on the x, y, and z axes is separately 
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input into the H, W, and D channels, respectively. Within each channel, the features are fused to 

increase the feature information in each dimension, resulting in features 𝑥̃, ỹ, and 𝑧̃. Finally, the 

features from different dimensions are concatenated and fused to generate the fused point cloud 

feature 𝐹𝑐1. The formula is as follows: 

𝑥̃ = (𝑥1 + 𝑥2) ∗ 𝑘𝑥                           (3a) 

𝑦̃ = (𝑦1 + 𝑦2) ∗ 𝑘𝑦                           (3b) 

𝑧̃ = (𝑧1 + 𝑧2) ∗ 𝑘𝑧                           (3c) 

Where 𝑥1, 𝑦1, and 𝑧1 denote the feature information in different dimensions of the point cloud 

feature 𝑃1, 𝑥2 , 𝑦2, and 𝑧2 denote the feature information in different dimensions of the image 

feature 𝐹1 , 𝑘𝑥 , 𝑘𝑦 , 𝑘𝑧  denote the convolution kernels in different dimensions, and ∗ denotes 

convolution. 

Therefore, we can obtain the fused point cloud features 𝐹𝑐𝑖(i=1,2,3,4) at four different scales. 

Finally, these features are concatenated and fused to output the fused point cloud feature Fout, which 

enables the fusion of image and point cloud features, compensating for the limitations of single-modal 

data and improving the performance of 3D object detection. The formula for this process is as follows: 

𝐹𝑜𝑢𝑡 = ∑ 𝐹𝑐𝑖𝑖 ∗ 𝐾𝑖                              (4) 

Where 𝐾𝑖 denotes the convolutional kernel for different scale feature channels, and ∗ denotes 

the convolution operation. 

2.4 Head 

The detection head takes the fused point cloud feature p from the feature fusion module as input. 

Firstly, it passes through the RPN network to perform classification and compute the offsets for the 

original point cloud coordinates, generating object candidate boxes. Then, these candidate boxes are 

inputted into the ROI Pooling module to map them to corresponding positions in the feature map. 

The mapped candidate boxes are divided into regions of the same size, and max pooling is applied to 

each region. Finally, fixed-sized object detection boxes are obtained. 

2.5 Loss function 

The main loss function in the paper is the RPN loss function. The paper designs the RPN loss as a 

combination of classification loss and regression loss, with the following formula:    

𝐿({𝑝𝑖}, {𝑔𝑖}) =
1

𝑁𝑐𝑙𝑠
∑ 𝐿𝑐𝑙𝑠𝑖 (𝑝𝑖 , 𝑝𝑖

∗) + 𝐼
1

𝑁𝑟𝑒𝑔
∑ 𝑝𝑖

∗
𝑖 𝐿𝑟𝑒𝑔(𝑔𝑖 , 𝑔𝑖

∗)            (5) 

Where 𝑁𝑐𝑙𝑠 and 𝑁𝑟𝑒𝑔 denote the total number of objects and the size of the objects, respectively. 

𝑝𝑖  and 𝑝𝑖
∗  denote the predicted probabilities of being an object, while 𝑔𝑖  and 𝑔𝑖

∗  denote the 

predicted bounding box offsets and the actual offsets, respectively. The value of 𝐼 is 10, which is 

used to balance the weights of the classification loss and the regression loss. The classification loss 

is computed using the cross-entropy loss function, and the regression loss is computed using the 

𝑆𝑚𝑜𝑜𝑡ℎ𝐿1 loss function. 

3. Experimental results and analysis 

To verify the effectiveness of the proposed algorithm, experiments were conducted on the public 

datasets KITTI and nuScences, and the results are compared with other algorithms. The experimental 
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equipment is Ubuntu 18.04 operating system, NVIDIA GeForce RTX3090 GPU server. The proposed 

algorithm is based on python 3.7, Pytorch 1.6.0 and the CUDNN 8.1.0 framework implementation, 

batch size set to 4 and learning rate set to 0.01. 

3.1 Dataset and evaluation metrics 

The KITTI dataset is currently the most widely used dataset in the field of 3D object detection [9]. 

It consists of 7,481 training samples. In this paper, the training samples are divided into a training set 

and a test set in approximately a 1:1 ratio. The training set contains 3,712 samples, while the test set 

contains 3,769 samples. The evaluation in this paper focuses on three classes: Car, Pedestrian (Ped.), 

and Cyclist (Cyc.) For each class, the dataset is further divided into three difficulty levels based on 

the size and occlusion of the 3D objects: easy, moderate, and hard. The performance of the models 

trained in this paper is evaluated using the Average Precision (AP) metric, specifically the Average 

Precision at 40 recall positions (APR40). The evaluation is conducted on the test set, and the AP is 

calculated separately for the Car, Pedestrian, and Cyclist classes. The Intersection over Union (IoU) 

threshold for Car is set to 0.7, while for Pedestrian and Cyclist, it is set to 0.5. The APR40 is used as 

the evaluation measure for the experimental results in this paper. The official evaluation metrics 

provided by the dataset are employed for the evaluation. 

3.2 Evaluation on the KITTI Dataset 

3.2.1 Comparison of Evaluation Metrics 

Table 1: Comparison of Car Category object Detection Accuracy 

Method 
Car 3D APR40(%) 

AP(%) 
Easy Mod. Hard 

PointPillar 87.75 78.39 75.18 80.44 

VoxelNet 89.01 82.36 79.91 83.76 

SECOND 90.91 83.82 81.36 85.36 

BtcDet 93.15 86.28 83.86 87.76 

Proposed 94.57 88.10 83.59 88.75 

Table 2: Comparison of Ped. Category object Detection Accuracy 

Method 
Ped. 3D APR40(%) 

AP(%) 
Easy Mod. Hard 

PointPillar 57.30 51.41 46.87 51.86 

VoxelNet 57.86 53.42 48.87 53.38 

SECOND 62.18 57.88 49.05 56.37 

BtcDet 69.39 61.19 55.86 62.15 

Proposed 70.72 63.87 57.96 64.18 

Table 3: Comparison of Cyc. Category object Detection Accuracy 

Method 
Cyc. 3D APR40(%) 

AP(%) 
Easy Mod. Hard 

PointPillar 81.57 62.94 58.98 67.83 

VoxelNet 79.15 57.75 51.10 62.67 

SECOND 78.50 56.74 52.83 62.69 

BtcDet 91.45 74.70 70.08 78.74 

Proposed 92.08 76.16 72.08 80.11 

To verify the effectiveness of the proposed algorithm, experimental tests were conducted on the 
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KITTI dataset to compare the experimental results of the proposed algorithm with those of 

mainstream algorithms. The comparative experimental results are shown in Tables 1, 2, and 3. The 

compared algorithms include PointPillar [10], VoxelNet [11], SECOND [7], and BtcDet [12]. The 

comparative experiments are conducted on different difficulty levels for the Car, Pedestrian, and 

Cyclist classes. The average precision (AP) on these three classes is improved by 0.99%, 2.03%, and 

1.73%, respectively. 

3.2.2 Visualization Analysis 

The visualization of the 3D object detection algorithm on the KITTI dataset is shown in Figure 3 

of the paper. A total of three sets of scenes are processed, and each set consists of four groups of 

images: RGB image, Ground Truth, BtcDet, and the visualized results of the proposed network.From 

the analysis of the point cloud visualization example in Figure 4a, it can be observed that the detection 

networks in the paper can effectively learn the information of the Car class and significantly improve 

the object detection accuracy. In Figure 4b, the BtcDet network produces numerous false positive 

results under occlusion, while the proposed detection network accurately detects the objects. In Figure 

4c, the BtcDet network suffers from a high number of false positive detections for small objects, 

while the proposed network addresses this issue and accurately locates the car objects. These 

visualization results intuitively demonstrate the effectiveness of the proposed algorithm. 
RGB 图像
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Figure 3: Visualization Image 

3.3 Ablation experiments 

The ablation experiments were conducted on the KITTI dataset, evaluating the 3D Average 

Precision (AP) at 11 recall positions (APR11) on medium-difficulty cars. The experiments were 

divided into three groups labeled (a), (b), and (c), as shown in Table 4. In method (a), the baseline 

model was used without any down-sampling or multi-modal feature fusion operations. In methods 

(b), (c), and (d), the output features of the point cloud branch after three subsequent SA (Set 

Abstraction) modules were fused with the features extracted from the image branch after three down-

sampling operations, based on the baseline model of method (a).Method (d) represents the complete 
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network architecture proposed in this paper. It extracts features from images and point clouds at four 

different scales and fuses them to enhance the detection accuracy of small objects and improve the 

overall precision of object detection. The performance of methods (b), (c), and (d) on medium-

difficulty cars in terms of 3D APR11 improved by 0.15%, 0.28%, and 1.00% respectively. 

Table 4: Ablation Experiment 

Method Setting (a) (b) (c) (d) 

Image feature 

extraction branch 

Level1  √ √ √ 

Level2   √ √ 

Level3    √ 

Point Cloud 

Feature Extraction 

Branch 

Level1  √ √ √ 

Level2   √ √ 

Level3    √ 

Result  3D APR11 (%) 87.10 87.25 87.38 88.10 

4. Summary 

The paper proposes a multi-modal feature fusion-based 3D object detection method. Firstly, a 

feature extraction module is designed to perform down-sampling on the input image data and sample 

grouping on the input point cloud data to obtain feature information at different scales. Secondly, a 

multi-modal feature fusion module is constructed to combine the feature information from both 

images and point clouds, compensating for the limitations of single data modalities and improving 

the detection performance for small objects. Experimental results demonstrate that the proposed 

algorithm achieves superior performance across multiple objective metrics. In future work, the 

detection of occluded objects will be further improved by incorporating prior information, enabling 

more accurate 3D object detection. 
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