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Abstract: Composite structures are increasingly used in the automotive industry due to their 

lightweight and specific energy absorption capabilities, while 3D printing is also widely used 

in industry because of their high efficiency and high precision. Recently, the Origami crash 

box (OCB) has been proposed as an energy absorber for automobiles because of their low 

initial peak load and high average load. Experiments and theory have shown that the energy-

absorbing effect of OCB will change significantly with the change in size. Since OCB is 

composed of multiple OCB cells, therefore, it is necessary to develop a model that can 

predict the energy absorption effect according to scale change of OCB cell. And this model 

is utilized to optimize the size to maximize its energy absorption capability while reducing 

the initial peak force. This paper explores the energy absorption effect of 3D printed OCB, 

which is made of carbon fiber-reinforced nylon in the same wight and thickness with a stable 

surface area of 14400mm2. The Artificial Neural Network (ANN) model which used Mean 

Squared Error (MSE) to measure its accuracy is established to predict high non-linear 

behavior of OCB cell at different size. And then the Non-dominated Sorting Genetic 

Algorithm (NSGA-II) in which initial Peak Crush Force (PCF) and Energy Absorption (EA) 

are used as optimization metrics, is applied to complete the multi-objective optimization. 

The utilized ANN model precisely predicts the variation of load capability with displacement 

in different size of OCB cell with an MSE as 0.046kN², energy error as 5.97J and PCF error 

as 0.17kN. A configuration of OCB is generated by NSGA-II shows superior performance 

than standard OCB cell. In terms of prediction, there is a 13.5% decrease in PCF, reducing 

it from 2.75 kN to 2.38 kN, while EA experiences a 7.8% increase, rising from 34.5 J to 37.2 

J. In experimental results, PCF exhibits a 14% reduction, decreasing from 3.08 kN to 2.65 

kN, while EA shows a 14.3% increase, climbing from 30.61 J to 35 J. 

1. Introduction 

The advent of automobiles has revolutionized transportation, but it has also brought with it the risk 

of traffic accidents, which pose a significant threat to people's safety and property. To address this 

issue, the installation of specially designed energy absorber is the main way to solve the crash 

problem[1] in traffic accident. Specifically, crash box is widely applied as energy absorption 

component, which is deployed in automobiles to protect passengers by dissipating the kinetic energy 

in a way of its deformation and fracture, also prevent front sub-frontal crash from crush damage.  
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Commonly, traditional crash boxes with simple cross-sections, such as squares, circles, and 

triangles, are often used due to their low cost and convenience of manufacturing[2-5]. However, 

installing traditional crash box will cause damage to passengers and goods due to their high initial 

peak force during impact, and their metal composition also increases the weight of the vehicle. To 

improve the energy absorption capability and reduce the initial peak force, researchers have 

introduced geometric imperfections into the design of crash boxes. Novel types of tubes have been 

developed with various triggers[6-10] to induce desired collapse modes, while emphasizing 

lightweight designs by utilizing the characteristics of fiber composite materials [11,12], which are 

lightweight and high in strength. In addition, researchers introduced rigid origami patterns as a 

geometric defect to improve energy absorption performance. For example, Ma J et al. [13] developed 

a new pre-folded crash box called the Origami Crash Box（OCB）, which features a collapse mode 

known as the complete diamond mode and has twice the number of traveling plastic hinge lines 

compared to a normal square tube. Experimental and theoretical studies have shown that the OCB 

outperforms the square tube in terms of average load while reducing the initial peak force [14]. 

Scholars have made a lot of efforts in structure optimization of the crash box with different methods. 

Ciampaglia A et al. [15] studied the impact response of OCB, which is made of carbon fiber/epoxy 

prepreg woven through experimental and simulation. Their study presented that the optimized OCB 

was provided with enhanced properties to the conventional OCB, and confirmed tune the geometry 

of OCB without affecting the mass would strengthen its attribute is possible. In advance, Zhang P et 

al. [16] discussed a pre-folded design that can guide the tube to achieve optimal energy dissipation 

by clustering analysis with a machine learning algorithm to identify key design parameters affecting 

energy consumption history. The result indicated that the OCB after they optimized shows a better 

energy absorption. In addition, Zhou C et al. [17] evaluated performance of mild steel OCB with 

different box geometry but in a stable area in 28800mm² and a thickness in 1mm under low velocity 

impact tests, in various of loading rates and tups, and three collapse modes was tested. Their 

experiments exhibited complete diamond model was sensitive to geometric imperfections, and it was 

the most efficient mode of energy absorption. Above all, although a lot of studies on OCB have been 

publish, an accurate model needs to be built in order to predict performance of different sizes OCB 

cell and design optimization for OCB cell is still a problem wait to be solved.  

Low PCF and high SEA are crucial factors in the design of crash boxes. However, achieving both 

a high specific energy absorption and a low initial peak force simultaneously can be challenging. 

Therefore, a precise model should be developed to evaluate both initial peak force and SEA. Artificial 

Neural Network (ANN) models have been widely used to fit highly nonlinear relationships between 

inputs and outputs in various disciplines [18-20]. ANN always contains one input layer, several 

hidden layers and one output layer. In this paper, the ANN utilized which input layer contains three 

neurons, output layer contains one neuron, and two hidden layers to model the force change with the 

different size of crash box and displacement of quasi-static compression. In addition to the ANN 

model, Non-dominated Sorting Genetic Algorithm II (NSGA-II) [21] is chosen to solve this problem 

and find the Pareto set. NSGA-II is a multi-objective optimization algorithm that is commonly used 

to solve problems with multiple objectives [22-24]. It is able to efficiently identify a diverse set of 

Pareto optimal solutions, which can help designers make informed decisions about trade-offs between 

conflicting objectives. 

This article is organized into six distinct chapters. The first chapter serves as the introduction, 

wherein a literature review is conducted. In the second chapter, mathematical model of OCB is 

elaborated upon, and the parameters that required to optimize is showed. Then in the third chapter, 

the empirical results of the conducted experiments are meticulously presented and analyzed. The 

fourth chapter, an ANN model is established to predict the non-linear relationships for the load force 

with the change of displacement. Proceeding to the fifth chapter, the optimization process is 
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undertaken utilizing the NSGA-II algorithm. Finally, the conclusion of this paper is presented, it 

offers a comprehensive wrap-up of study. 

2. Mathematical model and structural parameters 

The fundamental origami pattern for the OCB [25] is visually depicted in Fig. 1. In this graphical 

representation, the solid lines symbolize hill folds, while the dashed lines denote valley folds. When 

a thin sheet of material is progressively folded along these designated creases and subsequently joined 

at the opposite free edges, a novel tube configuration, referred as the origami crash box showed as 

Fig. 2. In order to optimize the structure of OCB cell, it is essential to identify the structural 

parameters of OCB. It is evident that l, b, and c play a pivotal role in defining the structural of the 

OCB model from unfolding diagram of OCB is illustrated in Fig. 1. 

While maintaining a constant material weight, in order to determine l, b, and c, the OCB surface 

area fixed at 14400mm2, a thickness at 1mm. And the configuration with l = 60mm, b = 60mm and 

c = 30mm is considered as the standard OCB. Then we can calculate l and b with 
𝑙

𝑏
 so the first 

structure parameter showed as Eq. (1): 

x1=
l

b
                                    (1) 

Subsequently, the parameter c should be determined. It is obvious that the value of c  has a 

relationship and other factors, particularly h and x, as evidenced in Fig. 3, where x represents the 

distance from the edge of the octagon to the edge of the quadrilateral as showed in Fig. 4. So, it is 

essential to calculate the value of x before calculate c, and x can be expressed as Eq. (2): 

                

Figure 1: Unfolding diagram of OCB.            Figure 2: Structure of OCB cell. 

                         

     Figure 3: Dihedral angle 𝜃 and its edges.             Figure 4: Top view of OCB. 
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There is a relationship between dihedral angle θ and its edges showed in Fig. 3, and the relationship 

can be indicated as Eq. (3) and Eq. (4): 
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cos
θ

2
 = 

2x

l
=
(√2-1)c

l
                               (3) 

sin
θ

2
=

h

l
                                  (4) 

The structure of OCB determines that θ is obtuse angle from Fig. 1, so 0<
θ

2
<

π

2
 which means 

0< cos
θ

2
 <1, with Eq. (3) the first constraint regarding c is obtained as 𝑐<(√2+1)l and the second 

constraint is c<b because the constraint of the OCB structure which can be deduced from the Fig. 1. 

Then the second parameter x2 which will confirm c as Eq. (5) and 0<x2<1: 

x2= 
c

min((√2+1)l, b)
                               (5) 

Different l , b , and c will generate different h , so we formulate the maximum compression 

distance d as 0.6h, and then we can get relationship between h and l, c as showed as Eq. (6) and the 

third parameter s which is related with compression distance d as Eq. (7): 

h = l sin
arc cos(√2−1)𝑐

𝑙
                             (6) 

s=
d

0.6h
                                   (7) 

Traditionally, the assessment of an OCB energy absorption capabilities during the crushing process 

relies on two key performance evaluation indicators: SEA and PCF. However, it is noteworthy that 

our OCB design prioritizes uniformity in weight across configurations. Therefore, in this context, EA 

is strategically employed as a paramount metric for measuring energy absorption performance. EA is 

expressed as Eq. (8), which F(s) is the force that will change with the variation of s during crushing. 

EA= 0.6h∫ F(s)ds
 1

0
                                 (8) 

3. Experimental work 

In this paper, we utilized the Ultimaker 2+ Connect as 3D printer and employed PATH-CF15, a 

type of carbon fiber nylon 3D printing material with a diameter of 2.85mm, to fabricate OCBs of 

varying sizes. The dimensions of the OCBs under investigation are intrinsically linked to the 

parameters x1and x2. Therefore, it is imperative to precisely define the permissible ranges for these 

parameters. Accordingly, we specified the range for x1  as 0.4 ≤ x1 ≤ 1.2  and for x2  as 0.2 ≤ 

x2 ≤ 0.8 , which contains the standard OCB size of x1 = 1, and x2  equals 0.5. To create a 

representative set of samples, 12 samples selected with pyDOE using Latin hypercube sampling, 

which is efficiently covers the sample space with a reduced number of samples, the result is illustrated 

as Fig. 5. As demonstrated in the Table 1, the sample configurations are presented in detail, the 

numbers refer to the identification assigned to each sample.  

To assess the crashworthiness of the OCB cell, quasi-static testing technique is adopted. To 

conduct these tests effectively, the AGS-X (manufactured by Shimadzu Instruments Co., Ltd.) is 

utilized, which has the capability to sustain a complete load spectrum of up to 10kN to finished 

experiment. In quasi-static testing approach, we conducted the experiments at a controlled speed of 

5mm/min, as illustrated in Fig. 6. The deformation history of the OCB cell during quasi-static testing 

is depicted in Fig. 7. It is able to be observed that diamond folded lobe concave inward with the 

increase of s, and the indenter will stop the experiment when s equals 1. To ensure the repeatability 

of the experiments and the accuracy of the data, every OCB cell configuration will be tested 5 times, 

and the force-displacement curve with the highest repeatability will be selected.  
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Figure 5: Latin Hypercube Sampling Distribution      Figure 6: Quasi-static testing of OCB cell 

 

Figure 7: Deformation history of OCB cell (x1=1.10, x2=0.64) 

Table 1: Result of Latin hypercube sampling 

Number x1  x2  l (mm)  b (mm)  c (mm)  

0 0.72  0.24  50.8 70.8 17.2  

1  

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

1.02 

0.82 

0.76 

0.94 

1.10 

0.89 

0.56 

0.60 

0.43 

1.20 

0.49 

0.45 

0.59 

0.42 

0.26 

0.64 

0.75 

0.52 

0.78 

0.66 

0.34 

0.35 

60.5 

54.2 

52.3 

58.1 

62.9 

56.7 

44.8 

46.5 

39.4 

65.7 

41.8 

59.5 

66.4 

68.8 

61.9 

57.3 

63.5 

80.4 

77.4 

91.4 

54.8 

86.1  

26.9 

38.9 

28.7 

16.1 

36.9 

47.6 

41.6 

60.2 

60.4 

18.8 

30.2  
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Figure 8: The load-s curve of samples       Figure 9: The relationship between PCF and EA   

The detailed parameters associated with the study are comprehensively presented in Tab 1. The 

primary objective of this investigation is to ensure consistency in the weight of OCB cell specimens. 

An examination of the tested OCB specimens, as depicted in Fig. 8. The highest energy absorption, 

totaling 50.4 J, is achieved at the configuration x1 = 0.72 and x2 = 0.24. Remarkably, this same 

configuration also generates the highest initial peak crush force, reaching 3.52 kN. Conversely, the 

lowest energy absorption, amounting to 11.18 J, is realized at the configuration x1 = 0.72 and x2 = 

0.24. Notably, this configuration also yields the lowest initial peak crush force, registering at 0.8 kN. 

Fig. 9 visually elucidates the relationship between Predicted PCF and EA. The depicted relationship 

exhibits an approximate linearity, indicating that higher energy absorption corresponds to higher 

initial peak crush force. Consequently, the core focus of our research endeavor is centered on 

enhancing the energy absorption characteristics while concurrently mitigating the initial peak crush 

force of OCB cell. 

4. Establishment of ANN model to predict load-s curve 

Artificial neural networks (ANNs) serve as a robust mathematical model renowned for their 

capacity to perform highly effective nonlinear approximation. Prior to commencing the training 

process of an ANN model, it is imperative to partition the dataset into training dataset and validation 

dataset. In this study, a dataset comprising 12 load-s curves are sampled at approximately 1000 

equidistant points. This results in a comprehensive dataset, consisting of 12,225 data sets, each 

encompassing specific inputs: x1, x2 and s, alongside the corresponding output, which represents 

load capacity. Equidistant sampling was performed from the 12 load-s curves to create the dataset. To 

ensure robust model training and assessment, 80% of the dataset is designated as the training set, 

while the remaining 20% serves as the validation set. MSE metric is employed to evaluate the 

performance of the ANN model. During the training process, the training dataset is leveraged to train 

the ANN using the gradient descent algorithm. Meanwhile, the MSE computed on the validation 

dataset is utilized to assess the structural soundness of the ANN model. The architecture of an ANN 

has a significant impact on the performance of the ANN. Specifically, it encompasses critical 

attributes such as the number of hidden layers and the quantity of nodes within each hidden layer. In 

this study, a comprehensive exploration of architectural configurations is conducted, encompassing 

single, dual, and triple hidden layers, with node counts ranging from 10 to 50. The configurations of 

activation function include two different activation functions which are ReLu (Rectified Linear Unit) 

and Sigmoid, those two functions illustrated in Fig. 10.  
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Figure 10: ReLu and Sigmoid               Figure 11: Best architecture of ANN 

The ANN is systematically trained under various configurations using a fixed training set. The 

training parameters are consistently set to a batch size of 64, 100 training epochs, and the utilization 

of the Adam[26] optimizer with a learning rate of 0.1. These configurations are implemented in the 

TensorFlow[27]. The performance of the ANN models is rigorously assessed using the MSE 

computed on the validation dataset. This metric serves as a key indicator to evaluate the effectiveness 

and suitability of each ANN configuration. MSE of validation dataset is applied to assess the property 

of ANN. Through a comprehensive evaluation process, the architecture that excels with a validation 

set MSE of 0.021 kN2 is identified as the best-performing configuration. This superior architecture 

encompasses two hidden layers, with the first hidden layer comprising 37 nodes and the second 

hidden layer comprising 19 nodes. Additionally, the Sigmoid activation function is applied to the 

hidden layers to facilitate their functionality. The architectural details are visually depicted in Figure 

11.  

 

Figure 12: MSE of training dataset, validation dataset and test dataset over epochs      

 

 Figure 13: Load-s curve of experiment and ANN for test data 
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Subsequently, the training dataset is employed to train ANN using the optimal architecture. To 

safeguard against overfitting during the ANN training process, the experimental dataset of standard 

OCB cell (x1=1, x2=0.5) is utilized as test dataset. The training process, as illustrated in Fig. 12, 

reveals a consistent decrease in the MSE for both the training and validation datasets. However, From 

Figure 12, it is evident that the Mean Squared Error (MSE) for both the training and validation 

datasets exhibits a consistent decrease throughout the training process. However, the MSE for the test 

dataset demonstrates an initial decline, then increase after the 72th epoch as highlighted by the red 

point and finally enter a stable phase. Hence, an early stop at the 72th epoch is deemed essential to 

prevent overfitting of the ANN to the training dataset. And the ANN gets a MSE as 0.172kN2 on test 

dataset, the result of ANN prediction and experiment is presented as Fig. 13. 

 

Figure 14: Load-s curves of experiment versus prediction of 12 samples 

The experimental crushing behavior of samples versus the prediction of crushing behavior is 

illustrated at Fig. 14. Moreover, the result from Table 2 reveals that the largest disparity of PCF 

observed experimental results and ANN predictions amounts to 19.9%. Furthermore, the maximum 

discrepancy of EA between experimental values and ANN predictions stands at 27.5%. Additionally, 

the average of MSE of samples is 0.046 kN2. In contrast, the MSE associated with the ANN 

predictions on the test dataset records 0.172 kN2, with an EA error rate of 11.3% and a PCF error rate 

of 10.7%.                               

Table 2: EA, PCF of experiment compared with prediction of ANN and MSE of ANN 

Number EAexperiment 

(J) 

EApredict 

 (J) 

PCFexperiment 

(kN) 

PCFpredict 

(kN) 

MSE  

(kN2) 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

50.38 

43.37 

29.53 

33.09 

38.73 

39.47 

22.94 

19.02 

20.90 

11.18 

43.45 

42.20 

35.75 

22.38 

23.98 

30.79 

31.13 

19.83 

16.46 

18.93 

9.49 

34.30 

3.52 

3.00 

2.62 

2.93 

2.62 

2.55 

1.37 

1.36 

1.22 

0.80 

2.48 

3.08 

2.73 

2.34 

2.86 

2.42 

2.38 

1.10 

1.32 

1.16 

0.76 

2.38 

0.081 

0.053 

0.061 

0.096 

0.058 

0.057 

0.035 

0.013 

0.009 

0.009 

0.062 

11 

test 

15.59 

30.61 

12.78 

34.50 

1.00 

3.08 

0.89 

2.75 

0.015 

0.172 
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5. Optimization based on NSGA-II 

In contrast to single-objective optimization problems, which yield a single optimal solution, multi-

objective optimization problems produce a set of solutions known as the Pareto optimal set. This set 

represents solutions that strike a balance among conflicting objectives, offering a spectrum of trade-

off solutions. To address multi-objective optimization challenges, a range of Multi-Objective 

Evolutionary Algorithms (MOEAs) has been introduced and extensively studied in the literature [28]. 

These algorithms aim to obtain Pareto-optimal solutions that cater to multiple objectives. Among the 

various MOEAs available, NSGA-II (Non-dominated Sorting Genetic Algorithm II) [21] stands out 

as one of the most potent and widely used approaches. It is renowned for its effectiveness and ease 

of implementation. NSGA-II builds upon the foundation of NSGA (Non-dominated Sorting Genetic 

Algorithm) [29] and integrates the principles of genetic algorithms and non-dominated sorting. In this 

research, we employ NSGA-II to address a multi-objective optimization problem defined as follows:  

{
 
 

 
 

 Min   PCF                          

Max  EA                            

s.t.    0.4≤x1≤1.2                

           0.2 ≤x2≤0.8                  

          l×b=3600mm2           

                      (9) 

In which EA and PCF can be calculated with two dimensionless parameters x1, x2 and ANN 

model. NSGA-II is complied with Pymoo[30], a concise description of the algorithm is provided 

below: 

(1) Generate an initial population, denoted as P0, with a total size of N. 

(2) Generate an offspring population, denoted as Q
t
, using a binary tournament selection process 

that relies on a crowding-comparison operator, as well as applying crossover and mutation operations 

on the parent population Pt , the subscript t  signifies the generation number. The offspring 

population Q
t
 is subsequently merged with its parent population Pt  to form the complete 

population Rt. 

(3) The fast nondominated sorting approach is executed on entire population Rt  to identify 

various nondominated fronts as F1, F2, etc. 

(4) Form a new parent population Pt+1  with a size of N  by selecting individuals from the 

obtained fronts Fi. 

(5) The above process is repeated until the maximum of iterations is attained. 

Within this research endeavor, specific experimental settings are defined. The initial population 

size, denoted as N is established at a value of 30. Furthermore, the offspring population size is 

meticulously configured to accommodate 50 individuals. Lastly, the maximum number of iterations 

for the optimization process is capped at 100. The outcomes of the Pareto set are visually portrayed 

in Fig. 15, providing a comprehensive representation of the solutions achieved through the NSGA-II 

algorithm. Fig. 16 furnishes a detailed depiction of the Hypervolume metric over the course of the 

optimization process. Notably, it reveals the progression of the Hypervolume as it reaches a plateau 

phase after 86 iterations, achieving a maximum value of 0.76. This phenomenon signifies the 

convergence of the NSGA-II algorithm towards an optimal solution set.  
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Figure 15: Pareto set of NSGA-II                Figure 16: Hypervolume 

In order to assess the trustworthiness of Pareto set, a representative sample which shows a better 

performance than standard OCB box with the configuration x1=1.20, x2=0.63 is selected. This 

specific sample is chosen for a detailed comparative analysis between experimental and predictive 

outcomes, the results of which are elucidated in Fig. 17. The predictive outcomes for this selected 

sample are as follows: 

(1) The PCF is estimated at 2.38 kN, exhibiting a relative error of 10.2% when contrasted with the 

experimental PCF value of 2.65 kN. 

(2) The EA prediction yields a value of 37.2 J, demonstrating a relative error of 6.0% compared to 

the experimental EA value of 35.0 J. 

Tab 3 shows the configurations of Pareto set and PCF, EA predicted by ANN. The results indicate 

that the highest EA value observed is 44.97J, corresponding to a configuration with x1=0.72, x2=0.20. 

Conversely, the lowest PCF value recorded is 0.3 kN, associated with a configuration with x1=0.4, 

x2=0.52.  

Table 3: Parameters, PCF and EA of ANN prediction for Pareto set 

x1  x2  PCF (kN) EA(J) 

0.40 0.52 0.30 8.91 

0.72 

0.82 

0.44 

1.20 

0.99 

1.20 

1.20 

1.20 

0.80 

0.77 

0.76 

0.78 

1.20 

0.71 

0.75 

0.71 

0.75 

0.77 

0.20 

0.80 

0.51 

0.20 

0.80 

0.72 

0.22 

0.52 

0.74 

0.71 

0.20 

0.20 

0.70 

0.71 

0.68 

0.75 

0.20 

0.71 

3.03 

0.92 

0.38 

1.81 

1.51 

2.09 

1.91 

2.54 

0.61 

0.93 

2.85 

2.75 

2.15 

1.34 

0.99 

1.23 

2.90 

0.93 

44.97 

21.45 

9.91 

29.22 

25.28 

32.00 

30.02 

40.53 

21.42 

22.38 

42.62 

40.16 

33.16 

24.55 

22.73 

24.25 

43.70 

22.38 
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1.20 

0.77 

1.20 

0.82 

0.73 

1.20 

1.19 

0.77 

0.73 

1.20 

0.44 

0.65 

0.21 

0.63 

0.79 

0.20 

0.58 

0.67 

0.72 

0.80 

0.66 

0.51 

2.32 

2.82 

2.38 

0.44 

2.99 

2.49 

2.26 

0.94 

1.13 

2.29 

0.38 

36.12 

41.28 

37.20 

21.33 

44.88 

39.38 

34.44 

22.61 

23.92 

35.53 

9.91 

 

Figure 17: Experimental and predicted Load-s curves with configuration x1=1.20, x2=0.63 

6. Conclusion 

In this paper, we have derived two crucial parameters x1 and x2, from mathematical model to 

precisely define the size of OCB cell in a stable surface and thickness. Then selecting 12 

representative samples with Latin hypercube sampling, those samples have test with quasi-static 

testing in a speed of 5mm/min. The dataset contains 12255 points sample from 12 cures at equal 

intervals. In order to training ANN model, we divided the dataset into training and validation sets, 

allocating 80% for training and 20% for validation. ANN is trained with training dataset and MSE of 

validation dataset is used to evaluate its performance. The experimental data of standard OCB cell is 

utilized as test data to prevent overfitting during training with best architecture. After that, NSGA-II 

is applied to generate Pareto set based on ANN, and Hypervolume is used to evaluate the convergence 

of NSGA-II. To assess the trustworthiness of Pareto set, one solution is selected from Pareto set which 

dominates standard OCB cell, and experiment has proved it. The main conclusions drown from this 

study are as follows: 

1) A mathematical model is established of OCB cell and two crucial parameters x1 and x2 is 

defined to describe the OCB cell in a stable surface and thickness. 

2) ANN model is built with a MSE of training data as 0.046kN2, and MSE of test data as 0.172kN2. 

With this ANN prediction, PCF of samples gets maximum error of 19.9%, and EA as 27.5%. 

Experiment shows that PCF of test data gets an error of 10.7% and EA as 11.3%. 

3) One solution is selected shows a superior performance from Pareto set generated by NSGA-II 

than standard OCB. Prediction indicates that PCF reduce from 2.75 kN to 2.38 kN, representing a 

13.5% reduction, while EA with an increase of 7.8%, rising from 34.5 J to 37.2 J. In experimental 

results, PCF demonstrates a 14% reduction, decreasing from 3.08 kN to 2.65 kN. Concurrently, EA 
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experiences a 14.3% increase, climbing from 30.61 J to 35 J. 

4) The Pareto set indicate that the highest EA value observed is 44.97J, corresponding to a 

configuration with x1=0.72 , x2=0.20 . Conversely, the lowest PCF value recorded is 0.3 kN, 

associated with a configuration with x1=0.4, x2=0.52. 

This paper applied ANN and NSGA-II to get a Pareto set, which provide some specific 

configurations of OCB cell for choosing. 
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