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Abstract: We present an approach to reconstruct the joint location from noisy marker 

position in 4D data. The 4D data means the 3D location of different markers and time 

sequence. At the core of our approach, we apply a modified diffusion model architecture to 

transfer and denoise the raw marker information in the latent space under the guidance of 

other temporal data. Then we decode the latent space to not real skeleton 3D space. This 

enable us not only utilize the temporal guidance, we further utilize the iterative denoising 

technique to exploit the potential in the diffusion network. Furthermore, we demonstrate 

that our work outperform auto- encoder based deep learning model by large margin during 

our experiment on CMU-Synthesized data set and some real-world dataset provided by NC-

SOFT. 

1. Introduction 

In the game development and movie producing, optical marker based motion capture is always the 

essential method to produce a high fidelity human motion. The procedure of optical motion capture 

divided into 2 steps. We first place the marker which is small sticker that can reflect the light on 

human body. Then we use the camera to receive the emission of the marker to calculate the accurate 

position of a particular marker. Compare to inertia based motion capture, optical marker based motion 

capture is usually more accurate. However, there still different noise lays in the motion capture task. 

There are usually three different kinds of noise produced during the optical motion capture 

procedure. The major noise is produced by the marker switching problem. Compared to point cloud 

denoising [1], the major difference is that in current setting, markers are ordered and sparse. However, 

in commercial ready product like Shogun, the marker switching problem is common and usually lead 

to an intensive manual solving procedure after user have the noisy marker data. The second noise is 

due to the occlusion. 

The occlusion usually happens when the target marker is covered by another body part say when 

one is bending. In [2], Holden usually set the occluded result to origin which was further proved not 

reliable by [3]. The third loss is obtained from the intrinsic un- controllable difference between 

camera and camera. Usually this problem will be largely reduced through camera calibration and 

other traditional method. 

The mocap solving procedure is another different task, the problem we are facing is not simply 

denoising the data we have now. After we obtained the accurate marker position, we need to translate 
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the marker’s motion to skeleton’s motion or directly to human mesh [4]. 

In this paper we provide a simple baseline based on the encoder and decoder architecture. This 

baseline is implemented according to the MoCap Solver method [5]. And we added a guided diffusion 

architecture that outperform the old baseline by large- margin. 

Compare to the traditional diffusion step we have in the image generation [6], we make the 

sampling procedure in the each diffusion time step to be definite. We change the architecture of the 

UNET [6] to be a large transformer obtained from SALAD[7]. We also apply an easy and useful 

training pipeline to distill knowledge from the skeleton encoder and decoder architecture. 

To summarize our contribution: 

(1) We provide a simple auto-encode base line to denoise marker. 

(2) We propose a transformer based definite diffusion network to denoise the marker data. 

(3) We carry out an extensive experiment based on CMU dataset and NCSOFT company data. 

Experiment shows a great boost to our method. 

2. Related Work 

2.1. Human Motion 

There are relatively small amount of open source method for motion capture due to the strong 

correlation between the game&movie company, and motion capture technique. However, there still 

abundant literature for us to review. SMPL [8] is the most opening work for the deep learning based 

human motion analysis. It generates human meshes according to the one image. Following work 

including [9] [10] which all devote into the 3D mesh reconstruction from one RGB image. [11] [12], 

[13]push it further to study for human pose estimation from a sequence input such as video and 

skeleton. Another line of work is originate from different gaming company such as [14] and [2]. This 

line of works focus more on the solving of motion captured data to reduce the intensive laboring after 

they obtained they the marker position. However, in current work, we devolve deep into these two 

company work mentioned above. We find there are several problems. The first one is that there is no 

code and data has been published for Holden’s method [2]. As for the MoCapSolver, the training 

hyperparameters is over 50 which is really hard to control and tunning. Despite that, we find that to 

train the MoCapSolver, it usually takes 6 days on only 200M meta data which makes even harder to 

adapt to other dataset with different marker setting. In our work, we simplify the MoCapSolver 

encoder decoder architecture as a baseline to shorten the training time and to decrease the number of 

hyper-parameter. Along with that, we provide a diffusion transfer method encoded with latent 

temporal information guidance. Our work outperform a large margin of the MoCapSolver on the real 

world data provided by NCSOFT company and CMU synthesize data. 

2.2. Diffusion Network 

Diffusion network is now the de-facto standard for computing graphic generation. Relatively older 

work including [15][16][17] make diffusion deep and scalable which means one can generate high 

fidelity RGB picture in the training data distribution. More recent works show an efficient method to 

guide the generating result through natural language[18][19]. After that, image editing has become 

the most popular topic in this field[20][21][22]. The 3D generation using NeRF as representation also 

becomes main stream after score distillation method was first invented by [23], other 3D generation 

method came into been such as [17][24][25]. However, since in our setting, we are focusing on the 

definite graph generation instead of generating of a grid like data. Recent work like molecular 

generation diffusion network such as [26][27] has been also vital. Our work was deeply influence by 

another line of work related to set generation and set arrangement, related work include[7]. In our 
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work, we utilize the set generation method provided by SALAD paper with definite label for each set 

element. To be specific, we transfer the set generation task to list generation task. We compare the 

generated result to noisy point cloud. When the difference is larger then some threshold, we will 

replace it with our generated result, otherwise it will stay as it was. We will discuss our method in 

details in method section[28]. 

3. Background 

In the background session, we will introduce MoCapSolver method in details and some basic for 

the diffusion models, we will focus on the iterative denoising step with time stamp diffusion models. 

3.1 MoCapSolver 

MoCapSolver is the representative of the traditional encoder and decoder architecture. In that work, 

authors used a simple linear layer that can transfer a sequence of marker data to the latent space. The 

length of the sequence is called as windows length. By using this method, author try to utilize the 

temporal data. Furthermore, they divide MoCapSolver into three problem. One is for the skeleton 

autoencoder [5], one for the motion autoencoder, and one for the marker configuration autoencoder. 

However, according to the ablation study we have, the auto-encoder does not show a significant boost 

to the performance (see table 1) while it increases the training time dramatically. 

Table 1: Marker Position Error Reproducing from MoCapSolver with Training Time 

Code base Marker Position Error (mm) 

without temporal smoothing 

Training 

Time 

Official pretrained model 

(with encoder trained) 

15.4256 6 days 

without encoder trained 18.75 12 hours 

with encoder trained 17.57 6 days 

MCθ(α) = α̂, MMθ(β) = β̂, MSθ(γ) = γ̂                                                           (1) 

ℒ1(x, x̂) = MSE(x, x̂)                                                                 (2) 

{α, β, γ} = x, {α̂, β̂, γ̂} = x̂                                                                            (3) 

The three autoencoders are denote as MC, MM, MS which are shown in equation one. They are 

marker configuration autoencoder, marker motion autoencoder and marker skeleton autoencoder. The 

input α, β, γ are the marker configuration, marker motion and joint position. Where α ⊆ RB ×M ×J 

where B is the batch size and M is the marker numbers and J is the joints number. Marker 

configuration is actually calculating the correlation between marker and skeleton. Intuitively, assume 

the skeleton for people is always the same, the difference between different people is related to the 

body shape, cloths and where the marker was places on target body. On the other hand, β ⊆ RB ×W 

×M ×3. Where W is the windows size of simply how long the temporal data you want to include in 

the motion autoencoder, since for each window, it is a 4d temporal data, we call it motion encoder. 

While for γ, γ ⊆ RB ×J ×3. This is simply a skeleton encoder without any correlation between different 

frames of skeleton. i.e. without temporal data. Noted that θ is the parameter in different auto-encoder. 

The loss function for these auto encoders are simply MSE (mean square loss), which is shown on 

the equation two, to make sure the auto encoder architecture converge. These three autoencoder will 

be decomposed into encoder and decoder. The decoder will be used in the next stage. Where we 

define M as the mocap solver encoder. It will transfer βn which represent the noisy motion into the 
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latent space. And it will take MC, MM, MS decoder to decode it back to β. We use a Huber loss as 

the loss function as illustrated in the equation 5. 

Mθ(βn, MCθd, MMθd, MSθd) = (α̃, β̃, γ̃)                                                      (4) 

ℒ2 = ℒ𝛿(𝛽, �̃�)                                                                    (5) 

The Huber loss function is given by equation 6: 

𝐿𝛿(𝑎) = {

1

2
𝑎2 𝑖𝑓 |𝑎| ≤  δ 

(|𝑎| −
1

2
𝛿) if |𝑎|

                                                                (6) 

Noted that we will use the absolute difference between predict y and ground truth to serve as alpha 

in the Huber loss function as illustrated by equation 7. 

α = |y − ŷ|                                                                            (7) 

3.2 Diffusion Network 

Latent Diffusion network[19] in general is a denoising process achieved by using different 

backbone architecture. 

LLDM ≔ E𝔼(x)∼N(𝟘,𝟙),t[|ϵ − ϵθ(zt, t)|2
2]                                                                 (8) 

In the equation 8, where we iteratively predict the noise that added to the original picture at the 

time stamp t, shows the essence of diffusion network. To minimize this loss function we need to 

minimize the difference between the real noise ϵ and the models prediction at time stamp t with 

previous noisy input zt. Noted that we our noise ϵ is just some sample from a standard normal 

Gaussian distribution N(0, 1) 

In diffusion procedure, we can alternate the random seed in the U-Net[6] architecture to vary the 

output that we want. However, in denoising problem, we don’t want to do that. Therefore, we 

substitute the U-Net architecture to a transformer architecture[29] with time embedding. And utilize 

the cross attention mechanism to make different marker and joints be aware of others. 

4. Method 

We divide our method into three section, one for iteratively denoising step, one is for simplified 

encoder and decoder architecture. The last one is for the details of the method set up the big picture 

of our approach is shown in the Figure 1: 

 

Figure 1: Model Architecture
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4.1 Encoder and Decoder 

As we mentioned in the background, the auto-encoder architecture is not useful and it will increase 

training time dramatically. Secondly, we also find out that in real world application, given the marker 

position we can easily obtain the skeleton position and the joint rotation easily. So here, our simplified 

version is that we directly use the simple fully connected layer as an auto encoder for denoising 

problem. The problem can be easily formulated as illustrated in the equation 9: 

ℒ(𝜃) = 𝑀𝑆𝐸(𝑀𝜃(𝛽𝑛), 𝛽𝑛)                                                             (9) 

Where M is the marker denoiser or simply an autoencoder. Notice that for simplicity, we did not 

implement cross attention in this the M denoiser. We only take one frame of the marker at one time. 

Therefore, it obviously decrease the computing amount. 

4.2 MoCapDT 

By obtaining the autoencoder we get form the last section, we first decompose this marker auto-

encoder to encoder and decoder. Then we add a complex transformer layer inside that. The 

transformer layer takes the latent from the encoder or the latent from last time stamp as one input. 

And it also take two latent encoded by the same marker encoder as another input. Noted that those 

two frame is one frame behind and one frame before the current time stamp. We will do the denoising 

on the latent space for T times. Following equation 10 and 11 clarify this point in a mathematical 

style. 

Lt = Mθe(βnt)                                                                       (10) 

Where we denote Mθe as the marker encoder and L is the latent space for one marker frame at real 

world time sequence t. We will do the iteratively denoising using the following structure: 

LLDM ≔ E𝔼(x)∼N,t[|ϵ − ϵθ(ztτ, Lt−𝟙, Lt+𝟙, τ, )|2
2]                                             (11) 

Where ztτ is the the latent space denoised at denoising time stamp τ with real world time sequence 

number t. While for θ is the parameter we want to optimize for our transformer architecture. We also 

pass the latent code encoded by M at real world time stamp t-1 and t+1 to server as temporal guidance. 

The goal of the prior criterion LLDM is to make our model predict the doise as accurate as possible. 

That means we will do the back-propagation using this criterion as the loss function. 

4.3 Details 

Our marker encoder is a 6 FC(fully connected) linear layer. While for the decoder is FC layer. Our 

transformer architecture has 4 self-attention blocks with 4 heads for the multi-head attention 

mechanism. We set the T to be 12 so that we can denoise our latent for 12 times using omne model. 

5. Experiment and Result 

Our experiment is mainly done on the sampled CMU synthesized dataset with more than 5000 

training sequence and more than 600 testing sequence. We adding different noise including Gaussian 

Noise and out layer according to the MocapSolver. We measure the difference per-point according to 

the MSE embedded code in the pytorch-lightning matrix. We will introduce our experiment in 2 

section. One for why simplified encoder is work and another for how our proposed denoising function 

is outperform the encoder decoder architecture. 
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5.1 Marker Autoencoder 

As one can find from the graph shown here is that the loss during the training and the validation 

loss are keep dropping as the the epoch number is increasing. That means the simplified marker 

autoencoder is working. 

 

Figure 2: Training Convergence Varification 

We set the batch size to be 512 and we sample each batch randomly to increase the robustness of 

our model. 

5.2 MoCapDT 

Then we set the same hyper parameters to our MoCapDT models and we find a much more stabled 

result. Here is the quantitative result. 

Table 2: Final Result and Comparision with Baseline 

 MPE JPE JOE 

MoCapDT 20.13 17.61 6.66 

Simplified Marker autoEncoder 142.98 134.58 31.17 

MPE is the marker position error, JPE is the joint position error, and JOE is the joint rotation error. 

From the table 2 above we find that MoCapDT outperform the base line by large margin. Which 

means our architecture is working well. 

 

Figure 3: Quantitative Result Illustration 

One can see from the qualitative result that our work outperforms the base line a lot in the figure 

3. The blue line is the encoder base line while the red one is the ground truth, and the green line is 

our method. For more experiment result, one can visit this website: https://youtu.be/znuR6KtOj5g. 
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6. Conclusion 

In this paper, we provide an easier baseline to implement the mocap solver. Along with that, we 

utilize the the temporal information by adding diffusion transformer to iteratively denoise the 

procedure. We use extensive experiment on the CMU dataset and NCSOFT company dataset to show 

that our method outperform the baseline by large margin. We also published NCSOFT company data 

and our baseline model code to make more contribution to the community. 
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