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Abstract: The Coati Optimization Algorithm (COA) has emerged as a prominent evolutionary 

algorithm renowned for its efficacy in addressing real-world problems. Its wide-ranging 

applicability across diverse domains is a testament to its exceptional performance and 

versatility. Compared to other evolutionary algorithms, COA has been proven to possess 

excellent global and local search capabilities.  This paper introduces a novel self-organizing 

multimodal multi-objective Coati Optimization Algorithm (MMOCOA) designed specifically 

to tackle multimodal multi-objective problems. The proposed algorithm aims to effectively 

handle the complexities associated with such problems by incorporating self-organizing 

mechanisms into the Coati optimization framework. Primarily, MMOCOA utilizes a self-

organizing speciation method as its primary approach to identify the Pareto optimal solutions. 

This speciation tactic can establish stable niches and continually updates them to actively 

search for and preserve the optimal Pareto solutions. Furthermore, an improved self-

organization mechanism is proposed to enhance the generation speed of the niches.  

Additionally, MMOCOA incorporates a non-dominated sorting method and a specialized 

crowding distance technique to effectively preserve the diversity of both the decision and 

objective space. To assess the effectiveness of MMOCOA, this study presents a comprehensive 

evaluation using eleven multimodal multi-objective test functions. Additionally, MMOCOA 

is benchmarked against five state-of-the-art multimodal multi-objective optimization 

algorithms. The experimental results highlight the superior performance of MMOCOA, as it 

demonstrates the capability to discover a larger number of Pareto solutions compared to the 

other algorithms under consideration. 

1. Introduction 

Multi-objective problems have been widely used for various real-life problems. In contrast to 

single-objective optimization problems, multi-objective optimization problems entail the 
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consideration of multiple conflicting objectives, thus requiring a trade-off when attempting to 

optimize one objective: improving the value of one might affect the value of another. For generality, 

a minimum description for such multi-objective problems can be expressed as follows. 
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indicate the imitations that the solution must satisfy in addition to optimizing the objective functions. 

If a solution x  satisfies all the specified constraints, it is referred to as a feasible solution. Different 

feasible solutions can be evaluated using dominance relations In multi-objective optimization 

problems, for feasible solution 1
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A feasible solution x  is deemed as a non-dominated solution if none of the other feasible solutions 

dominate it. The collection of non-dominated solutions is commonly referred to as the Pareto-optimal 

set (PS) and the collection of vectors that correspond to PS in the objective space is referred to as the 

Pareto front (PF). 

There may be two or more detached Pareto-optimal sets (PSs) of which correspond to the same PF 

in the multi-objective optimization problem, Liang et al [1] defines this type of problems as a 

multimodal multi-objective problems (MMOPs). Having multiple PSs is beneficial for decision 

makers as it provides them with a range of feasible solutions to choose from. Although a single PS is 

generally sufficient for solving a problem, finding several PSs can have advantages such as increased 

efficiency for decision makers. Therefore, when working on MMOPs, the opportunity for obtaining 

numerous PSs in the decision space must be taken into account.  

Due to its capacity to address multi-objective problem challenges, multi-objective optimization 

algorithms have garnered a lot of attention in recent years. As the outcome, numerous unique multi-

objective optimization techniques comprised of sophisticated optimization algorithms for various 

groups have been proposed.  Schaffer et al. (1985) [2] presented the Vector Evaluation Genetic 

approach (VEGA). However, this approach is prone to converge quickly to certain regions. 

Kalyanmoy Deb et al (1994) [3]. Introduced non-dominated sorting and niches approaches in the 

genetic algorithm (NSGA) to locate multiple PSs, this algorithm excludes the disadvantage of 

premature convergence in some regions of VEGA and enables the populations to be distributed over 

the entire Pareto optimal region. The high computational complexity, non-elitism policy, and 

requirement for common parameters are a few cons of NSGA, though. Kalyanmoy et al. (2002)[4] 

developed a quick and exclusive multi-objective genetic algorithm (NSGA-ll) to handle these 

problems. This algorithm implements a selection operator that combines parents and children to 

generate a mating pool, then selects the N greatest feasible solutions from this pool. NSGA-ll utilizes 

a fast non-dominated sorting procedure, an elite-preserving mechanism, and a parameter niching 
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operator, and employs the crowded comparison technique instead of the shared function technique. 

Consequently, the algorithm's temporal complexity will be reduced, and there won't be any 

parameters to specify. However, the elite preserving technique may be incapable of storing plenty of 

non-dominated solutions, and the computing cost of the crowded distance method is expected to 

increase as the amount of objective functions expands. Kalyanmoy et al. (2013) [5] developed an 

Evolutionary Many-Objective Optimization Algorithm based on the Reference-Point-Based Non-

dominated Sorting Approach (NSGA-lll). This approach prioritizes the size of non-dominated 

populations, increases population variety, and is well-suited for handling multi-objective optimization 

problems. However, all of the algorithms discussed above are concerned with the diversity, feasibility, 

and convergence of solutions in the objective space, instead of only a handful are focused with the 

allocation of feasible solutions in the decision space. Liang et al. (2016)[1] proposed the decision space 

Base on niching approach multi-objective evolutionary algorithm (DN-NSGAII), which not only 

notices solutions in the objective space but also finds the majority of solutions in the decision space. 

Obtaining all Pareto optimal solutions in the decision space, on the other hand, remains a significant 

difficulty. Liu et al. (2019) [6] proposed a novel multimodal multi-objective evolutionary algorithm 

that uses a density-based one-by-one update strategy to estimate the overall density of solutions in 

the decision space while attempting to maintain the population's diversity in the decision space.  

Mohammad Dehghani et al. [7] introduced the Coati Optimization Algorithm (COA) In 2022, a 

brand-new meta-heuristic method for optimization problems that models two of the Coati's natural 

behaviors: attacking and hunting iguanas and evading predators. According to simulation studies, 

COA is superior to existing swarm intelligence optimization algorithms in terms of both global and 

local search capabilities. It has also shown to be more successful in solving real-world optimization 

issues. 

To efficiently solve MMOPs, a self-organizing multimodal multi-objective Coati optimization 

algorithm (MMOCOA) is put forth in this study. This study's main contributions include describing 

the Coati optimization algorithm's implementation process, introducing a self-organized speciation 

method to create stable niches (sub-populations), exploring and maintaining the Pareto optimal 

solution set continuously, using a special crowding distance technique and non-dominated sorting 

methods to maintain diversity in the objective and decision spaces,  and evaluating MMOCOA's 

performance on eleven multimodal multi-objective test functions against five other multi-objective 

optimization techniques. 

The remaining parts of this paper are structured as follows: Chapter 2 introduces the Coati 

optimization algorithm and the MMOPs; Chapter 3 describes the MMOCOA's detailed 

implementation process; Chapter 4 presents the paper's experimental findings and analysis; and 

Chapter 5 offers pertinent conclusions and a look ahead to future research. 

2. Related work  

2.1 Coati optimization algorithm 

The Coati optimization algorithm mimics two of the coatis' natural behaviors: attacking and 

capturing iguana behavior and escaping from predators behavior. Firstly, Half of the coatis go to 

intimidate the iguana, and the mathematical simulation of the process is illustrated in equation (2). 
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Iguana are deemed to occupy the ideal place within the population. Then, the iguana jumps to a 

random position and the other half of the coatis attempt to capture it; the mathematical simulation of 

this process is illustrated in equations (3) and (4).  
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where  
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is the updated location of the i th coati,  
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 indicates the value of the j th dimension 

of 
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i
X

, 
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i
F

 is the objective value corresponding to 
1P

i
X

 after the i th update, r  is a number chosen at 

random from [0, 1], Iguanadenotes the position of iguana in the search space, which represents the 

best position in the population, and j
Iguana

denotes  Iguana ’s j th dimension. 
G

Iguana denotes the 

random position of iguana jump and
G

j
Iguana

 signifies the value of 
G

Iguana ’s j th dimension. I is a 

random number in {1, 2} and 
    is an upward rounding symbol. 

The content that follows is an in-depth explanation of the process of escaping from the predator: 

when the predator attacks the coatis. The coatis flee the present spot in search of a safer area closer 

to it. The mathematical simulation of the process is illustrated in equations (5) and (6). 
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Where 
2P

iX
 indicates most recently location  the i th coati, 

2

,

P

i jX is the value of the j th dimension of 

the 
2P

i
X variable, 

2P
Fi is the objective value corresponding to 

2P

iX , t  is the total number of COA 

updates., jlb
 and jub

 are the decision space's maximum as well as minimum values, respectively. 

2.2 Multimodal multi-objective problems 

The coupling relationship between the decision space and the objective space, particularly the PS 

to PF mapping relationship, is at the heart of the problem for MMOPSs. The former determines the 

search difficulty, and the latter determines the value of the PS. The mapping of the relationship 

between PS and PF of the MMOPs is generally one-to-one, while there may be circumstances where 

it is multiple-to-one.Liang et al.(2016)[1] investigated numerous PSs that corresponded to the same 

PF problem and noted define it as a multimodal multi-objective problem. Then Tanabe et al.(2017)[8] 

presented a decomposition-based evolutionary algorithm for MMOPs. A group of complex 

multimodal multi-objective test functions were developed by Liu et al. (2019), and they additionally 

suggested an efficient MMODE (multimodal multi-objective algorithm combined with differential 

evolution) algorithm [9]. Liang et al[10] developed a collection of multimodal multi-objective 

evaluation questions with various characteristics based on the prior research. such as issues with 

various PS and PF forms, issues with the coexistence of local and global PS, and issues with scalable 

PS quantities, decision factors, and objectives.  

There are multi-modal multi-objective optimization issues with numerous PSs corresponding to 

the same PF, as illustrated in Figure 1, which shows two PSs corresponding to the same PF.  
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Figure 1: Example of multimodal multi-objective problem. 

3. MMOCOA 

3.1 The self-organized speciation 

The multi-population method is often used to address multimodal problems [11-12]. The size of each 

sub-population is usually preset when dividing the population into sub-populations [13], which can 

sometimes lead to inappropriate allocation [14], lowering algorithm performance or resulting in an 

incomplete PS. Currently, multiple swarming tactics have been employed in MMOPs, but the existing 

methods still have plenty of shortcomings. For example, MO_Ring_PSO_SCD [15] constructs several 

sub-populations using a ring topological framework. However, it selects the neighborhood based on 

an individual index, which occasionally fails to reflect the true distribution in the decision space, 

potentially influencing the exploration effectiveness of subpopulations. SSMOPSO [16] used a self-

organizing mechanism approach to form subpopulations. While this approach improved the 

effectiveness of the algorithm and reduced the number of overlapping individuals between 

subpopulations, the seed of the subpopulation may not be the best Pareto optimal solution which can 

lead to individuals in this subpopulation moving towards local optimal solutions, thus making it less 

conducive to obtaining all PSs. 

To alleviate the drawbacks of the previously described population techniques, this paper proposes 

an improved self-organized mechanism. This approach uses a self-organized mechanism to form 

subpopulations, ensuring that the seed of the said subpopulation is a non-dominated individual instead 

of a local Pareto optimal solution. Since all individuals in the subpopulation will then move toward 

this non-dominated individual, this enhanced approach improves the overall algorithm performance 

and its global search ability. The details of this improved self-organizing mechanism can be found in 

the following section. 

3.2 The improved self-organized mechanism 

We present a superior self-organizing mechanism that produces subpopulations using a self-

organizing technique in the paper. To begin, all solutions that are not dominated in the population are 

retrieved and saved in the variable P .The subpopulation's radius R is then determined. Following that, 

a seed for the subpopulation is chosen based on the non-dominated rank of its individuals, individuals 

within the radius R from the seed are assigned to establish the subpopulation depends on the Euclidean 

distance, and the individuals assigned to the subpopulation are then removed from the initial 

population. The assignment step is stopped once every member of the population has been assigned 

to the subpopulation. Last but not least, the method verifies whether all seeds in the subpopulations 

are non-dominated solutions; if not, it adds the subpopulation to the subpopulation with the closest 

non-dominated solution seeds. As indicated in Figure 2, triangles A and G represent non-dominated 

individuals in the initial population, whereas circle D represents the dominated individual. Triangle 

A is selected as the seed of the first subpopulation because it is the most excellent non-dominated 

individual in the initial population. Those within R  of the seed A are assigned to the identical 
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subpopulation, resulting in the first subpopulation containing A, B, and C. G is the most excellent 

non-dominated individual among the remaining individuals in the population and picked as the seed 

of the 2nd subpopulation. Individuals H and I are included inside the radius R, resulting in the second 

subpopulation of individuals G, H, and I. Individual D is then the best of the remaining individuals 

in the population, with individuals E and F falling inside the radius R. As a result, the third population 

includes those D, E, and F. Since Individual D is not a non-dominated individual in the original 

population, and the closest non-dominated one from individual D is A, therefore the third 

subpopulation is integrated into the first. The seed of the subpopulation is the greatest one of the 

original population, guiding its members to better place. As the subpopulations evolve, they are 

capable of finding several PSs in the decision space.  

 

Figure 2: The fundamentals of the improved self-organized mechanism 

Table 1: Pseudo-code for the self-organized speciation 

1 individuals are arranged in sort
P

 according to increasing rank value  

2 Produce sort
P

 

3 _NP edsort = the quantity of individuals in sortP
 

4 while _ 0NP sort    

5 //decide the specie seed 

6 ( )jsubpopulation seed =The first one in sort
P

 

7 //Speciation based on the improving self-organized mechanism 

8       for i=1: _NP sort  

9         if  dis( ( )jsubpopulation seed ,
( )

sort
P i

) ≤ R   

10               
( )

sort
P i 

 belongs to ( )jsubpopulation  

11      end if 

12    end for 

13 Upgrade sortP
 by eliminating those who have been assigned to  ( )jsubpopulation  

14     _NP sort  and j  

15 endwhile 

16 Q = The dominated individual in the species seed  

17 Update species seed  by removing the individuals in species seed that is assigned to Q ; 

18 for k=1:length( Q ) 

19    t =Index of non-dominated individuals in species seed  closest to Q k( ). 

20   Add the subpopulation to which ( )Q k  belongs to the population   which   ( )species seed t  belongs 

21 endfor 

22Output the set of sub-populations 

The implementation process of the self-organizing speciation method based on the improved self-
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organizing mechanism is outlined in Table 1. The population is first sorted by the non-dominated 

sorting method employing special crowding distances [1] and saved in sort
P  in order of ascending. The 

first one in sort
P  is then chosen as the subpopulation's seed. The Euclidean proximity of the population 

to the seed is computed, and individuals who fall within the Euclidean distance R from the seed are 

segregated into the same subpopulation. Individuals designated to subpopulations are subsequently 

removed from the initial population. The aforementioned processes are repeated until the entire 

population has been assigned to a subpopulation. Lastly, the algorithm checks whether the seeds in 

all subpopulations are non-dominated individuals; if not, it adds the subpopulation to which the seed 

belongs to the subpopulation of the nearest non-dominated seed. 

3.4 Procedure of MMOCOA 

The primary purpose of Multimodal Multi-Objective Optimization Algorithms is to identify and 

retain several PSs in the decision space. To achieve this, the improved self-organizing mechanism 

method is utilized to construct the subpopulation and locate multiple PSs, while Non-dominated-

SCD-sort is used to preserve them. Thus, by combining the Non-dominated-SCD-sort with the self-

organized speciation method, this strategy has sufficient advantages to solve MMOPs. 

Table 2: MMOCOA 

1 Initialize the population (0)POP  

2 Evaluate ( (0)POP )  

3 Initialize Fes =1 

4 while Fes <MaxFes do 

5 Sort every individual in the POP  using the Non-dominated-SCD-sort t. 

6 Formulating subpopulations using the Algorithm 1. 

7 //SpeciesNumber is the number of subpopulations. 

8 for j = 1: SpeciesNumber 

9 if j< SpeciesNumber/2 

10 for i = 1: length( j (t)POP
) 

11 j
Iguana

= the first individual in the j
(t)POP

. 

12 Upgrade  j
(t)POP

 to j
(t+1)POP

 according to equation(1) and (4). 

13 endfor 

14 else 

15 for i = 1:length( j (t)POP
) 

16 
G

j
Iguana

= The random individual in the decision space. 

17 Ugrade  j
(t)POP

 to j
(t+1)POP

 according to equation (2), (3) and (4). 

18 endfor 

19 endif 

20 endfor 

21 Upgrade j
(t)POP

to j
(t+1)POP

according to equation(6) and(7) 

22 Fes=Fes+1 

23 endwhile 

24 Output the non-dominated individuals in the POP  

After constructing the subpopulations, all individuals in the subpopulation move towards their 

respective seeds. The process of implementing MMOCOA is outlined in Table 2, where POP  
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represents the whole population, 
k

j
( )POP t

 reflects the value of the j th individual in the k th 

subpopulation in the t th iteration, and 
( )

j
POP t

denotes the t  th cycle of the j  th subpopulation. j
Iguana

 

denotes the seed of the j th subpopulation, and 
G

j
Iguana

 signifies the decision space's random position 

in the j  th subpopulation. The MMOCOA algorithm's process is explained in the following manner. 

The population as a whole is initialized first, and then the members of the population are ordered 

using Non-dominated-SCD-sort. Following sorting, several subpopulations are created using the self-

organizing speciation technique mentioned in Algorithm 1. Next, the seed in the j th subpopulation is 

selected as j
Iguana  and the random position in the decision space is chosen as 

G

j
Iguana .Finally, the 

population j (t)POP is updated to j
)(t+1POP  in accordance with equations (2), (3), (4), and equations (6), 

(7). Until the termination criteria is met, this process is stopped. 

4. Experiment settings 

4.1 Test evaluation functions  

Eleven test functions are used in this paper's evaluation of MMOCOA's performance. These test 

functions are MMF1-MMF2 [1], MMF3-MMF8 (suggested by Yue et al. [15]), SYM-PART simple and 

SMY-PART rotational, Omin-test function (n=3), and two complicated benchmark functions. There 

are two PSs for each of these functions (MMF1, MMF2, MMF3, and MMF7), while there are four 

PSs for the remaining MMF test functions. The Omin-test function (n=3) contains 27 PSs, but the 

SYM-PART issues have nine PSs. 

4.2 Performance indicators 

In this research paper, we analyze the performance of MMOCOA using Inverted Generational 

Distance (IGDX) [18], and Pareto Sets Proximity (PSP) [15]. IGDX is the average Euclidean distance 

between the reference points (true PS) and the obtained PS in the decision space. *S  stands for a 

collection of reference points that are evenly spaced along the actual PS, and K  stands for a collection 

of final population solutions that are not dominated. The average distance in the decision space from 
*S  to K  is then used to determine IGDX, as shown below: 

*
,

min_ ( , )
( *)

| *|

v S K
IGDX K S

S

d v



                                              (7) 

where v indicates a true PS in *S   and 
min_ ( , )Kd v

  represents the shortest Euclidean distance 

between v  and the point in K . The IGDX value represents the diversity and convergence of solutions 

in the decision space; the lower the value, the closer the obtained PS are to the genuine reference 

points (true PS), and the better the algorithm's performance. IGDX evaluates the quality of the 

obtained solutions in the decision space.The PSP indicator reflects the similarity between the obtained 

PSs and true PSs, and the PSP is 

CR
PSP

IGDX


                                                             (8) 

Where IGDX is the Inverted Generational Distance in the decision space, and CR exhibits the 

overlap ratio between the true PSs and the obtained PSs. The equation for CR is as follows: 
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where n  is the dimension of the decision space, and  
min

lv
and 

max

lv
represent the minimum and 

maximum values in the l  dimension of the obtained PSs, and 
max

lV
,

min

l
V

represent the maximum and 

minimum values of the l dimension of the true PSs, respectively. The larger PSP values are desirable. 

4.3 Comparison with other algorithms  

To demonstrate the performance of MMOCOA, this paper compares the effectiveness of 

MMOCOA with five cutting-edge algorithms: MO_Ring_PSO_SCD [15], SSMOPSO [16], DN-

NSGAll [1], NSGA-ll[4], and Omni_Opt [19]. The other five comparison algorithms' parameters are 

identical to those listed in the original research.The 11 benchmark test functions are subjected to all 

experiments individually for a total of 30 times, with the average value being used to determine the 

experiment's ultimate outcome. All algorithms' iteration counts are set to 1000, while the population 

sizes are set to 100. The experiments are carried out using MATLAB 2021 on a computer running 

the 64-bit version of Windows 11 and powered by an Intel(R) Core(TM) i7-8750H processor clocked 

at 2.20 GHz and 2.21 GHz and 8 GB of RAM. 

5. Experimental simulation and analysis 

5.1 The results of PSP and IGDX on algorithms  

The averages and standard deviations of the PSP and IGDX indicator values that the six 

comparison algorithms produced for each test function are displayed in Tables 3 and 4, respectively. 

Wilcoxon's rank sum test was utilized to show any notable differences between MMOCOA and the 

comparative algorithms at a level of significance of 0.05 after thirty independent runs on each test 

function. The findings of MMOCOA are markedly better, worse, and similar to the comparison 

algorithm, respectively, by the symbols "+", "-," and "=". 

On the 11 multimodal multi-objective test functions, the performance of the proposed MMOCOA 

in this paper is much superior than the other five multimodal multi-objective algorithms. As shown 

in Table 3, MMOCOA has the highest average PSP values on MMF1, MMF4, MMF5, MMF6, and 

MMF7 test functions. Furthermore, MMOCOA obtains weaker average PSP values than SSMOPSO 

on MMF2 test functions. Additionally, MMOCOA obtains weaker average PSP values than 

SSMOPSO and MO_Ring_PSO_SCD on MMF8 and MMF3 test function, yet still higher than DN-

NGSAll, Omin_Opt, and NSGA-ll. These outcomes show that the suggested MMOCOA algorithm 

works well on part of all of the benchmark functions, whereas SSMOPSO and MO_Ring_PSO 

perform well on the other part; however, these benchmark functions only involve 2 and 4 PSs, 

respectively. The number of PSs for SYM-PART simple, SYM-PART rotated, and Omni-test is 

relatively big for the remaining three benchmark functions. When compared to other algorithms, 

MMOCOA's PSP average value performed the best on SYM-PART simple and SYM-PART rotated 

test functions. Even while the average PSP values achieved by MMOCOA were lower than the 

25



averaged PSP values acquired by MO_Ring_PSO_SCD and SSMOPSO on the Omin-test test 

function, they were still higher than the average PSP values obtained by the other comparison 

algorithms.  

According to the statistical data, the suggested MMOCOA earned the best average PSP values on 

all seven multimodal multi-objective test functions. On the MMF1, MMF5, MMF6, SYM-PART 

simple, and SMY-PART rotated test functions, there was no significant difference between 

MMOCOA and SSMOPSO. However, the average value acquired by MMOCOA was much lower 

than that obtained by SSMOPSO in the MMF2 and MMF3 test functions, and the average PSP value 

obtained by MMOCOA on the Omin-test test function was weaker than that obtained by SSMOPSO 

and MO_Ring_PSO_SCD. Overall, the findings show that MMOCOA performs well on all 

benchmark functions, despite poor performance on some test functions, such as MMF2 and Omin-

test. 

Table 3: Comparison of PSP values of MMOCOAs and five comparison algorithms 

  NSGA-11 DN-NSGAll Omni_Opt    SSMOPSO MO_Ring_PSO

_SCD 

MMOCOA 

MMF1 Mean 5.63E+00 1.01E+01   7.82E+00  1.18E+01 1.01E+01 1.30E+01  

 Std 8.78E-01 9.93E-01 1.77E+00  1.03E+00        8.80E-01  1.07E+00  

  + + + + +  

MMF2 Mean 7.60E+00  1.10E+01       2.09E+01 6.06E+01 4.91E+01 5.13E+01 

 Std 4.37E+00 6.69E+00 2.17E+01 8.58E+00   7.37E+00 1.07E+01 

  + + + - +  

MMF3 Mean 7.82E+00 1.37E+01   1.20E+01 5.56E+01 5.38E+01 4.90E+01   

 Std 3.27E+00    9.31E+00 1.81E+00 9.55E+00 6.68E+00  9.80E+00 

  + + + - -  

MMF4 Mean 3.10E+00  5.17E+00  4.73E+00 1.66E+01  1.65E+01  1.81E+01 

 Std 4.75E-01  1.42E+00 1.18E+00   2.18E+00 1.92E+00  2.26E+00 

  + + + + +  

MMF5 Mean 3.08E+00 4.92E+00  3.61E+00   7.26E+00 6.55E+00  7.77E+00 

 Std 4.30E-01 6.16E-01 7.20E-01 4.88E-01  6.05E-01   3.34E-01 

  +  + + + +  

MMF6 Mean 3.58E+00 5.61E+00 4.79E+00 8.73E+00  7.53E+00  8.82E+00 

  5.83E-01   5.34E-01 8.87E-01 6.57E-01 6.15E-01 5.98E-01 

  + + + + +  

MMF7 Mean 7.82E+00 1.84E+01 1.59E+01  1.43E+01  1.66E+01  2.14E+01 

  1.63E+00    1.79E+00 2.88E+00 1.69E+00 1.72E+00 1.68E+00  

  + + + + +  

MMF8 Mean 3.30E-01 1.66E+00 1.62E+00  5.35E+00  7.71E+00   5.14E+00 

 Std 1.90E-01 6.94E-01 7.17E-01  1.39E+00 1.15E+00 1.15E+00 

  + + + - -  

SYM-PART 

simple 

Mean 1.47E-02 1.45E-01 1.17E-01 8.47E+00  6.54E+00  8.61E+00 

 Std 2.33E-02    5.83E-02  6.96E-02  1.64E+00 6.34E-01 1.18E+00 

  + + + + +  

SMY-PART 

rotated 

Mean 4.83E-02 1.04E-01   8.30E-02 7.68E+00 7.02E+00 8.33E+00 

 Std 2.03E-02 4.50E-02  5.14E-02 9.10E-01   7.36E-01 2.17E+00 

  + + + + +  

Omin-test  Mean 2.24E-01 3.98E-01   3.94E-01 3.34E+00  2.31E+00  1.60E+00 

 Std 9.57E-02 9.97E-02 1.26E-01 6.11E-01 3.78E-01 3.22E-01 

  + + + - -  

+\=\-  11\0\0 11\0\0 11\0\0 7\0\4 9\0\2  
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Table 4: Comparison of IGDX values of MMOCOAs and five comparison algorithms 

  NSGA-11 DN-NSGAll Omni_Opt    SSMOPSO MO_Ring_PSO

_SCD 

MMOCOA 

MMF1 Mean 1.73E-01 9.88E-02 1.22E-01 8.45E-02 9.81E-02 7.77E-02 

 Std 2.63E-02 9.30E-03 2.26E-02 7.60E-03   8.40E-03 5.20E-03 

  + + + + +  

MMF2 Mean 1.62E-01 1.17E-01 1.26E-01 1.67E-02 2.04E-02   2.11E-02 

 Std 9.04E-02 7.27E-02  1.15E-01  2.40E-03 3.30E-03   9.40E-03 

  + + + - -  

MMF3 Mean 1.27E-01 1.01E-01 9.99E-02 1.84E-02 1.84E-02    2.14E-02 

 Std 3.73E-02     5.82E-02  4.86E-02  3.50E-03   2.30E-03 6.20E-03 

  + + + - -  

MMF4 Mean 3.12E-01 2.07E-01 2.16E-01 5.95E-02 6.06E-02 5.53E-02 

 Std 4.44E-02 5.14E-02  4.72E-02  7.20E-03 7.50E-03 5.50E-03 

  + + + + +  

MMF5 Mean 3.12E-01 2.04E-01  2.57E-01 1.37E-01  1.51E-01 1.28E-01 

 Std 4.58E-02 2.51E-02  4.56E-02 8.90E-03 1.39E-02  9.10E-03 

  +  + + + +  

MMF6 Mean 2.71E-01  1.79E-01  2.01E-01   1.14E-01  1.31E-01 1.12E-01 

  3.52E-02 1.73E-02 3.82E-02 8.80E-03   1.02E-02 6.90E-03 

  + + + + +  

MMF7 Mean 1.21E-01  5.47E-02   6.22E-02 6.98E-02 5.90E-02 4.67E-02 

  1.53E-02  5.60E-03 1.23E-02   8.60E-03 5.70E-03  4.70E-03 

  + + + + +  

MMF8 Mean 1.94E+00  6.97E-01 6.87E-01 1.98E-01 1.30E-01 2.06E-01 

 Std 4.88E-01 2.47E-01 3.07E-01 5.17E-02  1.95E-02   5.73E-02 

  + + + - -  

SYM-PART 

simple 

Mean 1.10E+01 6.86E+00 7.21E+00  1.23E-01 1.54E-01  1.17E-01 

 Std 2.30E+00  2.47E+00 2.00E+00 2.52E-02   1.52E-02 1.29E-02 

  + + + + +  

SMY-PART 

rotated 

Mean 8.92E+00 6.80E+00 7.79E+00   1.30E-01 1.42E-01    1.26E-01 

 Std 2.18E+00 2.14E+00 2.38E+00 1.52E-02 1.53E-02 3.15E-02 

  + + + + +  

Omin-test  Mean 2.51E+00 2.16E+00  2.13E+00  3.08E-01 4.38E-01 6.53E-01 

 Std 3.64E-01   2.37E-01  3.06E-01  5.65E-02 7.62E-02  1.36E-01 

  + + + - -  

+\=\-   11\0\0 11\0\0 11\0\0 7\0\4 7\0\4  

Lower IGDX values[17] are preferable, and SSMOPSO delivers the smallest IGDX values among 

the MMF2, MMF3, MMF8, and Omin-test algorithms. Similarly, MMOCOA achieves the smallest 

IGDX values on MMF1, MMF4-MMF7, and the SYM-PART simple test function, while 

MO_Ring_PSO_SCD has the lowest IGDX value on MMF8. The IGDX values gained from 

SSMOPSO and MMOCOA are similar on the SYM-PART simple, but MMOCOA performs worse 

than SSMOPSO on MMF2, MMF3, and MMF8. Furthermore, MMOCOA is less efficient than 

MO_Ring_PSO_SCD on MMF8. Notably, MMOCOA outperforms NSGA-11, DN-NSGAll, and 

Omni_Opt in terms of IGDX values on all MMF test functions. Consequently, MMOCOA performed 

satisfactorily when tested against five other multimodal multi-objective algorithms on the MMF test 

tasks. However, only 2 and 4 PSs were considered for these benchmark tests. For the remaining three 

problems with a higher number of PSs, Table 4 shows that the IGDX values obtained by MMOCOA 

are weaker than those obtained by SSMOPSO and MO_Ring_PSO_SCD on the Omin-test test 
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function, similar to those obtained by SSMOPSO on the SYM-PART test functions, weaker than 

those obtained by MO_Ring_PSO_SCD on the SMY-PART rotated test function, and outperformed 

DN_NSGAII, Omni_Opt, and NSGA in three test functions. According to the Wilcoxon rank sum 

test, the IGDX values obtained by MMOCOA are significantly superior than those obtained by NSGA, 

DN_NSGAII, Omni_Opt, SSMOPSO, and MO_Ring_PSO_SCD in 11, 11, 11, 7, and 7 of 11 

comparisons, respectively. Overall, the MMOCOA method produces excellent outcomes for the 

MMF problems, but it performs poorly for situations with a large number of PSs. It reveals that the 

MMOCOA method is appropriate for handling issues with fewer PSs. 

6. Conclusion 

To solve MMOPs, this paper proposes a self-organizing multimodal multi-objective Coati 

optimization algorithm (MMOCOA). The speciation technique is employed in MMOCOA to produce 

several enduring niches/subpopulations, and individuals in the subpopulations advance in parallel 

towards a large number of PSs. In the meantime, a novel self-organized method has been introduced 

to increase the original speciation strategy's effectiveness and reliability. 

The results of the experiment reveal that MMOCOA outperforms other algorithms in terms of 

performance and capacities to keep more PSs in the decision space. However, MMOCOA performs 

poorly on multimodal multi-objective evaluations with irregular PS or numerous PSs, such as MMF3, 

MMF8, and Omin-test.In the future, we will increase MMOCOA's performance so that it can solve 

test functions with irregular PSs or a high number of PSs, and it will be used to solve real-world 

MMOPs. 
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