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Abstract: Based on the research background of the "dual carbon" goals, this study explores 

the carbon emission levels of provinces across the country. This article uses principal 

component analysis and factor analysis to study the carbon emission levels of 30 provinces 

in China from 2016 to 2020. The research results indicate that: (1) The level of economic 

development is the main factor affecting the carbon emission levels of 30 provinces in China 

based on factor analysis. (2) Overall, carbon emissions in the eastern and central regions 

have increased, while carbon emissions in the northwest and northeast regions have 

decreased. Therefore, the following measures should be taken: strengthen regional 

communication and optimize resource allocation.  

1. Introduction 

On September 22, 2020, China proposed for the first time the "dual carbon" target, an important 

commitment made by China to the international community, which not only concerns the sustainable 

development of the Chinese nation, but also the common destiny of human beings all over the world. 

Achieving peak carbon and carbon neutrality is an extensive and profound economic and social 

systemic change, facing unprecedented difficulties and challenges. 

At present, scholars at home and abroad mainly study carbon emissions in the following three 

aspects: first, to study the influencing factors of carbon emissions; second, to study the spatial and 

temporal characteristics of carbon emissions; and third, to design as well as predict the peak path. 

Yang[1]et al. based on the geographically weighted regression method to study the influencing 

factors of carbon emissions in China's provinces, among which total electricity consumption and total 

fossil energy consumption have the greatest influence on carbon emissions. Liu[2]et al. analyzed the 

panel data of 30 provinces and cities nationwide from 2000-2018 using the panel quantile STIRPAT 

model, and the results showed that per capita disposable income and industrial structure play a 

promoting effect, and urbanization level, average household size, and technological innovation level 

play a suppressing effect on carbon emissions. Jiang[3]et al. used the Probit model to find that the 

carbon peaking time varies significantly among the provincial regions in China, with a north-south 

strip aggregation in the spatial pattern. Wang[4]et al. analyzed the spatial effects of carbon emission 

intensity in 30 Chinese provinces from 2015 to 2017 based on the EKC model and STIRPAT model 

using exploratory spatial data analysis and the spatial Durbin model. The results showed that from 

2005 to 2017, China's carbon emission intensity gradually decreased from east to west and from south 

to north, China's inter-provincial carbon emission intensity showed a clustering effect in space, and 
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the clustering effect gradually weakened over time. Based on the LMDI model and the predefined 

targets of economic and social development announced by relevant policies, Chen[5]et al. predicted 

CO2 emissions to peak in 2027 at about 110.87 Mt. Li[6]et al. used the stochastic effects of 

population, affluence and technology regression to predict China's 2015 to 2035 s peak carbon 

emission model, and the results showed that China's peak carbon emissions would be reached in 2024, 

2027, and 2030 under three different scenarios of low, medium, and high scenarios, respectively. 

In the previous studies, it was found that scholars mostly focused their research on carbon 

emissions on the above three aspects, and less analysis was done on the comprehensive evaluation of 

carbon emission levels. At the same time, there are problems such as excessive disparity and uneven 

distribution of carbon emission levels among various provinces and regions in China, so it is 

especially important to evaluate the provincial carbon emission levels objectively. Based on this, this 

article selects the data related to carbon emissions of 30 provinces in China from 2016 to 2020 and 

calculates the comprehensive score of carbon emission levels of 30 provinces in China by using 

principal component analysis and factor analysis methods. At the same time, to visually represent the 

characteristics of carbon emission level changes, ArcGIS software is used to draw carbon emission 

zoning maps with dynamic changes in 2016, 2020, and 2016-2020, respectively, to analyze the 

changes in carbon emission levels in each province during the five years, and to analyze the reasons 

for spatial distribution in combination with the characteristics of the spatial distribution of carbon 

emission levels nationwide, and then put forward relevant suggestions. 

2. Model introduction  

2.1 Principal component analysis 

The principal component analysis is a commonly used statistical method for data that transforms 

multiple indicators into several representative principal components, which are linear combinations 

of the original variables, and the new principal components are not only uncorrelated with each other 

but also reflect the vast majority of information from the original data[7]. 

2.2 Factor analysis 

Factor analysis refers to the principle of dimensionality reduction based on the premise of ensuring 

the maximum retention of the original data, replacing the intricate and high-dimensional variables 

with public factors, i.e., grouping variables according to their correlation magnitude, increasing the 

correlation of variables in the same group, and transforming variables in different groups into 

uncorrelated or lower correlation, each group then representing a public factor, and finally 

decomposing the original variables into two parts and forms. One is a linear function composed of a 

few common factors, and the other is a special factor. The advantage of this approach is the ability to 

identify a few representative principal factors from many variables with overlapping information and 

complex relationships, thus simplifying the complex problem[8]. 

The model for the factor analysis is as follows. 
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In Eq. (1), X1, X2, X3,..., Xn are called the original variables, F1, F2,…, Fm are called the common 

factors, which are the factors appearing in the expressions of the original variables; an1, an2,…, anm 

are called the factor loadings, and the larger the absolute value of aij (|aij|≤1) means the greater the 

loading of the common factor Fj on Xi.
1, 2,,…, n

are special factors, and this part cannot be 

explained by the original variables.  

The steps of the factor analysis study are shown in Figure 1. 

Index screening

Raw Data Standardization

KMO & Bartlett's Test

Is the KMO greater than 0.7

Calculate the correlation matrix 
R and its eigenvalue λ and 
variance contribution rate

Y

 Whether it satisfies λ>1 and the 
cumulative variance contribution 

rate is     

Calculating the Overall 
Score

Find the score of each 
factor

Rotate the factor loading 
matrix

Determine the number of 
common factors isN

Y

    N

 

Figure 1: Flow chart of factor analysis steps. 

3. Example analysis  

3.1 Indicator selection and data sources 

In this paper, concerning previous research literature, a total of nine indicators were selected and 

considered to construct the indicator system as shown in Table 1. And 30 provincial regions in China 

(except Tibet, Taiwan, Hong Kong, and Macao) are taken as the research objects, and the factors 

influencing the level of provincial carbon emissions in China in 2016-2020 are studied. Among them, 

socioeconomic development data were obtained from the 2016-2020 China City Statistical 

Yearbook[9] and Statistical Communique of the People’s Republic of China on the 2016-2020 

National Economic and Social Development of the 30 regions, and energy consumption data were 

obtained from the 2016-2020 China Energy Statistical Yearbook[10]. Due to the different indexes 

with different measurement levels, the raw data were standardized to ensure the validity of the data. 

The standardization formula is as follows: 

min

max min

i
i

X X
Z

X X





                                     (2) 
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In Eq. (2), Xi is the original data and Zi is the normalized data. 

Table 1: Content of indicators. 

Influencing Factors Indicator Name Unit Reference 

Economic Development Level Real GDP percapita(X1) yuan [11] 

Per capita income level Disposable income per capita for all residents(X2) yuan [12] 

Urbanization level 
Urban population as a share of the resident 

population(X3) 
% [13] 

Industry Structure Share of secondary industry in GDP(X4) % [14] 

Technology Innovation Level 
Internal expenditure of R&D funds as a percentage of 

GDP(X5) 
% [12] 

Foreign trade level 
Total imports and exports of the operating unit location 

as a percentage of GDP(X6) 
% [15] 

Traffic level Road passenger traffic(X7) 
10000 

persons 
[16] 

Energy intensity Total energy consumption as a share of GDP(X8) % [17] 

Level of environmental regulation 
Industrial pollution control completed investment as a 

proportion of GDP(X9) 
% [18] 

3.2 Bartlett's sphericity test  

To ensure the validity of the factor analysis results, it is necessary to conduct Bartlett's sphericity 

test on the variables to judge whether the Sig value and KMO value meet the requirements, and the 

test results are shown in Table 2. As can be seen from Table 2, the KMO value is 0.774, which is 

greater than the critical value of 0.6 and suitable for factor analysis; Bartlett's sphericity test results 

show that the significance level is much less than 0.05, indicating that the above data meet the 

requirements of factor analysis. 

Table 2: KMO and Bartlett's Test. 

KMO sampling suitability quantity 0.774 

Bartlett Test 

Approx. Chi-Square 1186.193 

Degrees of freedom 36 

Significant 0.000 

3.3 Example measurement  

Principal component analysis was performed on all indicator data (X1 to X9) after standardization 

to extract principal components. The calculated eigenvalues and variance contribution rates of each 

factor are shown in Table 3. 

From Table 3, we can see that there are three eigenvalues with eigenvalues greater than 1, λ1, λ2, 

and λ3, whose values are 3.794, 1.881, and 1.661, respectively, and the variance contribution rates 

corresponding to the three eigenvalues are 42.153%, 20.895%, and 18.457%, respectively, and the 

cumulative variance contribution rate is 81.505%, which indicates that these three principal 

components explain 81.505% of the total variance, indicating that the loss of data information was 

less, and the factor extraction was more successful, so the three principal components were extracted 

as Y1, Y2, and Y3. Among them, the first principal component contains more information and has a 

greater influence on the provincial carbon emission level. 

The rotated component matrix is shown in Table 4, from which it can be seen that X1, X2, X3 , and 

X6 have larger loadings on the first principal component Y1, which mainly reflects the basic economic 

situation and urbanization rate, and can be named the economic development level factor (F1); X7, X8 , 

and X9 have larger loadings on the principal component Y2, which mainly reflects the transportation 

and energy consumption situation and environmental pollution control level, which can be named as 
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environment and energy utilization efficiency factor (F2); X4 and X5 have larger loadings on the third 

principal component Y3, which mainly reflects the industrial structure and R&D input level, and can 

be named as industrial structure and innovation level factor (F3). Among them, F1 is the main 

influencing factor of carbon emission level, and the rapid economic development is generally 

accompanied by the increase in carbon emission level, and the different economic development levels 

among different provinces and regions will inevitably bring about different carbon emission levels. 

Finally, to accurately analyze the carbon emission levels of the 30 provincial areas, a weighting 

operation is required to obtain a composite score. Through the Score process, the expression of the 

combined carbon emission level score I is calculated as: 

1 2 3

0.42153 0.20895 0.18457
* * *

0.81505 0.81505 0.81505
I F F F  

                       (3) 

Table 3: Total Variance Explained 

factor 

Eigen % of Variance(Unrotated) % of Variance(Rotated) 

Eigen 

Value 

% of 

Variance 

Cumulative

 % of 

Variance 

Eigen 

Value 

% of 

Variance 

Cumulative % of 

Variance 

Eigen 

Value 

% of 

Variance 

Cumulative

 % of 

Variance 

1 4.440 49.333 49.333 4.440 49.333 49.333 3.794 42.153 42.153 

2 1.728 19.197 68.530 1.728 19.197 68.530 1.881 20.895 63.048 

3 1.168 12.974 81.505 1.168 12.974 81.505 1.661 18.457 81.505 

4 0.674 7.489 88.993       

5 0.446 4.961 93.954       

6 0.280 3.110 97.064       

7 0.150 1.666 98.729       

8 0.085 0.944 99.673       

9 0.029 0.327 100.000       

Table 4: Component Score Coefficient Matrix 

 
Component 

1 2 3 

Real GDP percapita(X1) 0.934 -0.144 -0.196 

Disposable income per capita for all residents(X2) 0.936  -0.273 

Urban population as a share of the resident population(X3) 0.949  -0.109 

Share of secondary industry in GDP(X4) 0.918 -0.205 -0.104 

Internal expenditure of R&D funds as a percentage of GDP(X5)  -0.821 0.280 

Total imports and exports of the operating unit location as a 

percentage of GDP(X6) 
-0.313 0.832 0.196 

Road passenger traffic(X7)  0.664 0.523 

Total energy consumption as a share of GDP(X8) -0.127  0.890 

Industrial pollution control completed investment as a 

proportion of GDP(X9) 
0.423  -0.585 

3.4 Results and Analysis  

Through the above calculations, a total of 150 composite scores of carbon emission levels for 30 

provincial domains were obtained. First, the descriptive statistics of the composite score I are shown 

in Table 5, and to ensure the statistical distribution of the data samples, the I values are normalized 

and the expression is: 
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( 0.97)
Normalized  

1.62 ( 0.97)

I
I

 


                               (4) 

Using ArcGIS, the natural intermittent point grading method (Jenks) is selected to classify the 

normalized I values, and four categories are selected in this paper. According to the classification 

results, the normalized I values are classified into low, lower, high, and higher according to different 

levels of carbon emission levels, and the statistical results are shown in Fig.2. According to Fig.2, it 

can be seen that the number of provinces with high carbon emission levels is the least in 2016, 

accounting for only 10%. In 2020, the number of provinces with high carbon emission levels 

increases significantly, increasing by 200% compared to 2016. 

Table 5: Composite Score I Descriptive Statistics. 

 N Range Min Max 

Score 150 2.59 -0.97 1.62 

Number of effective cases (in columns) 150    

The evaluation levels of carbon emission levels of 30 provincial areas in 2016 and 2020 are shown 

in Fig.3. and Fig.4. As shown in Fig.3 and Fig.4, the carbon emission levels of about 27% of the 

national provinces in 2020 compared with 2016 have increased and 20% of the provinces have 

decreased. Among them, the carbon emission level of the southeast coastal provinces improves 

overall, such as Jiangsu, Shanghai, Zhejiang, Fujian, and Guangdong, all improve from higher to high 

levels. A few inland provinces, such as Beijing and Chongqing, also saw an increase in carbon 

emissions. The provinces with unchanged carbon emission levels are concentrated in the western and 

northeastern regions of China. 

From the change of carbon emission level composite score I, the provinces with a two-year 

difference within ±5% are defined as the provinces with flat carbon emission levels, greater than 5% 

is the level increase, and less than -5% is the level decrease. The change in the carbon emission level 

of 30 provinces from 2016 to 2020 is shown in Fig.5, from Fig.5, it can be seen that in 2020, 

compared with 2016, about 43% of the provinces have an increase in carbon emission level. About 27% 

of the provincial areas have the same carbon emission level, and 30% of the provincial areas have a 

decrease in carbon emission level. Most of the provinces with decreasing carbon emission levels are 

in the western region, such as Inner Mongolia, Qinghai, and Guangxi. The Northeast region also 

shows a decreasing trend in carbon emission levels. 

 

Figure 2: Carbon emission levels for 2016 and 2020 
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Figure 3: 2016 Carbon emission level evaluation level 

 

Figure 4: 2020 Carbon emission level evaluation level    

 

Figure 5: Change in carbon emission level from 2016 to 2020. 

4. Conclusions and Recommendations 

China's provincial carbon emissions show an overall increase in the level of the eastern and central 

regions and a decrease in the level of the northwest and northeast regions. The level of economic 

development is the main reason for the above spatial distribution of carbon emission levels. In recent 

years, with the gradual expansion of foreign trade and the improvement of science and technology 

innovation in the eastern coastal region, the level of economic development has been improving. The 

economic development level of southwest and central regions has also been improving due to their 

location advantages and steady development. However, the northwest and northeast regions have 
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slowed down their economic development in recent years due to their natural geographical conditions 

and lack of development momentum, respectively. Based on the above conclusions, the following 

recommendations are obtained: 

(1) Strengthening regional communication and optimizing resource allocation. The 

Beijing-Tianjin-Hebei region has abundant resources and talents and should build a reasonable 

industrial chain and supply chain by optimizing the allocation of resources, which is conducive to 

narrowing the development gap between Beijing, Tianjin, and Hebei and improving the overall 

efficiency of resource utilization. To focus on the high energy consumption and high pollution 

industries in Hebei, to fundamentally improve the coal-based energy industrial system, we should 

vigorously develop clean energy and renewable energy; at the same time, we should vigorously 

develop a low-carbon economy, introduce new technologies and develop new energy sources to 

reduce high-carbon energy consumption. Beijing, Tianjin, and Hebei should strengthen regional 

communication to achieve energy-saving and emission reduction technology sharing, and 

environmental pollution management, and promote the collaborative high-quality development of the 

three regions, which will help to enhance the carbon emission regulation ability of Hebei. 

(2) Since the economic development of the northwest region cannot be separated from the 

consumption of fossil energy, the resource economy accounts for a large proportion. We should 

accelerate the transformation of economic development mode, and realize the transition from 

resource dependence to technology dependence through technology introduction and talent 

introduction so that economic development is no longer dependent on fossil energy consumption, 

which will help to improve the level of economic development in Northwest China. Meanwhile, in 

Northwest China, heavy industries are the main source of carbon emissions, and the government 

should strongly support the transformation and upgrading of traditional industries to low-carbon 

industries to promote the development of a green economy in Northwest China, which helps to 

achieve sustainable development. 

(3) The Northeast should take advantage of its location, take the initiative to optimize and improve 

the business environment and enhance the momentum of regional economic development. Seize the 

important opportunities of "One Belt, One Road" and RCEP, expand the opening to the outside world, 

actively expand the import and export trade and modern trade industry, and obtain new economic 

growth points in foreign trade. At the same time, as one of the important old industrial bases in China, 

the northeast region has the problem of a single industrial structure. It should take into account the 

development of the times and strive to build high-tech industries such as information technology and 

biotechnology to break the single industrial layout and achieve new economic development in the 

northeast region. 
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