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Abstract: This paper investigates the situation in Merton (1969) model that volatility is a 

constant rather than a stochastic process, then points out that this is a model 

misspecification since it doesn't match the real market. Next, the HJB equation with 

stochastic volatility is derived through stochastic control, thereby calibrate model 

misspecification. 

1. Introduction 

Nowadays, in modern control theory, one essential problem is how to deal with stochastic 

control problem. In order to satisfy stochastic control problem, a state equation must always be 

maximized/minimized within a set of admissible controls with respect to a certain value function. 

One of the main approaches to solving such problems is dynamic programming principle (DPP). It 

was proposed by Bellman [1], DPP effectively deals with the above optimization problems under 

discrete control, and provides a theory basis for the Hamilton-Jacobi-Bellman (HJB) equation in the 

context of continuous control. For a function, by providing both necessary and sufficient conditions 

for optimal control, the HJB equation is typically formulated as a nonlinear PDE (partial differential 

equation) in the value function, which is also the solution to the equation (value function) [2]. When 

solution is obtained, optimal control can be achieved by maximizing the Hamiltonian, which 

involved in the HJB equation [3]. 

The desirability of stochastic control has led to its application being extended to the financial 

field: as investment banks and asset management companies seek to efficiently build investment 

portfolios in the process of economic globalization, this has become a crucial aspect of their 

operations. Merton's research on continuous time portfolio optimization began in 1969 [4]. He 

introduced a realistic re-balancing policy and made the assumption which stock price follow a GBM 

model. Through the use of DPP and the HJB equation, Merton was able to derive a closed-form 

solution for the CRRA (constant relative risk aversion) utility function, which enabled to determine 

the optimal control and maximum return. 

With the in-depth study of scholars, they found that one of the biggest problems of Merton 

model is that the constant volatility hypothesis cannot capture a large amount of market information, 

which leads to the corresponding deviation of pricing. However, using the assumptions of the 

Heston model [5], it is possible to describe real market movements more naturally. In this type of 

model, both the stock price and the volatility are stochastic processes. Li [6] constructed a problem 

framework for simulating investment based on Heston model, and obtained the explicit solution of 

optimal control by solving a set of ODE (ordinary differential equation) under the power utility 
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function. It is very instructive for investment activities in the real market and can help investors find 

the optimal return. But the drawback is the stock process and volatility have no correlation, they just 

obey the same Brownian motion. 

To our knowledge, currently, there is no reference specifically exploring how to calibrate Merton 

(1969) model misspecification and derive the correct HJB equation. This paper gives a general 

method for deriving HJB equation and optimal control through DPP and Taylor expansion under 

stochastic volatility model. 

2. DPP and HJB equation 

There are four main methods to solve stochastic control problems: maximum principle, 

martingale, DPP, machine learning. One of the most classical mathematical methods is DPP, which 

Bellman first proposed it in 1957. Subsequently, many scholars have proved and developed on the 

basis of above, e.g. Nisio [7] and Yong, etc. 

Typically, we want some restrictions on the control process in order to optimize. For example, a 

ℱ- progressively measurable process 𝜋 is required to be adapted to state process 𝑋𝑡. The definition 

of admissible control is a control process that satisfies some constraints, where 𝒜 representations 

the set of all admissible controls Therefore, 𝜋 is called optimal control and 𝜋 ∈ 𝒜. 

For simplicity, given a bounded and continuous function 𝜙 where the range is 𝜙: ℝ → ℝ, then 

the performance criterion is: 

𝑉𝜋(𝑥) = 𝔼[𝜙(𝑋𝑇
𝜋)]                                                             (1) 

The value function uses expectation to predict future returns. Here we do not consider discount 

factor and infinite time. Under the range [0, 𝑇] × ℝ → ℝ , define value function 𝑉: 

𝑉(𝑥) = sup
𝜋∈𝒜[0,𝑇]

 𝑉𝜋(𝑥) = sup
𝜋∈𝒜[0,𝑇]

 𝔼[𝜙(𝑋𝑇
𝜋)]

                                        (2) 

Assume 𝑠 ≤ 𝑡 ∈ [0, 𝑇], DPP can be written as: 

𝑉(𝑠, 𝑋𝑠) = sup
𝜋∈𝒜[𝑠,𝑡]

 𝔼[𝑉(𝑡, 𝑋𝑡
𝜋) ∣ ℱ𝑠]

                                            (3) 

We assume state process 𝑋𝑡 satisfies the following SDE (stochastic differential equation) with 

drift 𝑎(𝑡, 𝑋𝑡 , 𝜋𝑡) and volatility 𝑏(𝑡, 𝑋𝑡 , 𝜋𝑡), where 𝑊𝑡~𝒩(0,1) is Brownian motion; and 𝜎𝑡 for the 

same reason: 

𝑑𝑋𝑡
𝜋 = 𝑎(𝑡, 𝑋𝑡 , 𝜋𝑡)𝑑𝑡 + 𝑏(𝑡, 𝑋𝑡 , 𝜋𝑡)𝑑𝑊𝑡                                    (4) 

𝑑𝜎𝑡 = 𝑐(𝑡, 𝑋𝑡 , 𝜋𝑡)𝑑𝑡 + 𝑑(𝑡, 𝑋𝑡 , 𝜋𝑡)𝑑𝑍𝑡                                      (5) 

𝑑𝑊𝑡𝑑𝑍𝑡 = 𝜌𝑑𝑡                                                              (6) 

where correlation −1 < 𝜌 < 1. We need to maximize: 

𝑉(𝑡, 𝑋) = sup
𝜋∈𝒜

 𝐽(𝑡, 𝑋, 𝜋) = sup
𝜋∈𝒜

 𝔼 [Φ(𝑋𝑇
𝜋) + ∫  

𝑇

0
 𝑓(𝑡, 𝑋𝑡 , 𝜋𝑡)𝑑𝑡]                        (7) 

where 𝐽 is objective function of the control problem, Φ is bequest function [2], 𝑓 is instantaneous 

utility function. 

In Merton's model (1969), under constant volatility, his HJB equation is: 

0 = sup
𝜋∈𝒜

  {𝑓(𝑡, 𝑋𝑡 , 𝜋𝑡) +
∂𝑉

∂𝑡
+

∂𝑉

∂𝑋
𝑎 +

1

2

∂2𝑉

∂𝑋2 𝑏2}                                (8) 

Due to the limitations of the times and technological development, Merton (1969) didn't realize 
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the model misspecification at that time. Since volatility is stochastic process, in the process of DPP, 

we need to consider the influence of 𝜎𝑡, and there should be three variables 𝑡, 𝜎, 𝑥 in the value 

function; Afterwards, use Taylor expansion and Ito’s lemma to obtain HJB equation. It is worth 

noting that the HJB equation obtained by above method for 𝑉(𝑡, 𝑋) and 𝑉(𝑡, 𝑋, 𝜎) are different, 

which directly affects the expression of optimal control. 

If the conclusion of equation (8) is directly applied to the case where the volatility is a stochastic 

process, it will make a mistake. In order to calibrate the model misspecification, we should derive 

HJB equation correctly. The method is: use a discrete time process firstly to discretize equation (7), 

then expand it to a continuous time process by taking Δ𝑡 → 0. The  approximation process is: 

𝐽(𝑡, 𝑋, 𝜋) = 𝔼[Φ(𝑋𝑇) + ∑  𝑇
𝑡=1  𝑓(𝑡, 𝑋𝑡 , 𝜋𝑡)Δ𝑡]                                        (9) 

The initial value 𝑋0 and 𝜎0 is constant, which is the constraints of equation (9). After using DPP, 

value function 𝑉 becomes: 

𝑉(𝑡, 𝑋𝑡 , 𝜎𝑡) = sup
𝜋∈𝒜

 𝔼[𝑉(𝑡 + 1, 𝑋𝑡+1, 𝜎𝑡+1) + 𝑓(𝑡, 𝑋𝑡 , 𝜋𝑡)Δ𝑡]                        (10) 

Through Taylor expansion and Ito’s lemma for value function at time (𝑡 + 1): 

𝑉(𝑡 + 1, 𝑋𝑡+1, 𝜎𝑡+1)  = 𝑉(𝑡, 𝑋𝑡 , 𝜎𝑡) +
∂𝑉

∂𝑡
Δ𝑡 +

∂𝑉

∂𝑋
Δ𝑋𝑡 +

1

2

∂2𝑉

∂𝑋2
(Δ𝑋𝑡)2

 +
∂𝑉

∂𝜎
Δ𝜎 +

1

2

∂2𝑉

∂𝜎2
(Δ𝜎𝑡)2 +

∂2𝑉

∂𝜎 ∂𝑉
𝜌Δ𝜎Δ𝑋 + 𝑜(Δ𝑡)

                (11) 

Substitute (10) into (11), it can obtain: 

𝑉(𝑡 + 1, 𝑋𝑡+1, 𝜎𝑡+1)  =
∂𝑉

∂𝑋
(𝑎Δ𝑡 + 𝑏Δ𝑊𝑡) +

1

2

∂2𝑉

∂𝑋2 (𝑎Δ𝑡 + 𝑏Δ𝑊𝑡)2 +
∂𝑉

∂𝑡
Δ𝑡 + 𝑜(Δ𝑡) + 𝑉(𝑡, 𝑋𝑡 , 𝜎𝑡)

 +
∂𝑉

∂𝜎
(𝑐Δ𝑡 + 𝑑Δ𝑍𝑡) +

1

2

∂2𝑉

∂𝜎2 (𝑐Δ𝑡 + 𝑑Δ𝑍𝑡)2 +
∂2𝑉

∂𝜎 ∂𝑉
𝜌(𝑎Δ𝑡 + 𝑏Δ𝑊𝑡)(𝑐Δ𝑡 + 𝑑Δ𝑍𝑡)

 

(12) 

Unite like terms and simplify: 

0 = sup
𝜋∈𝒜

  {𝔼 [
∂𝑉

∂𝑋
(𝑎Δ𝑡 + 𝑏Δ𝑊𝑡) +

1

2

∂2𝑉

∂𝑋2 (𝑎Δ𝑡 + 𝑏Δ𝑊𝑡)2 +
∂𝑉

∂𝑡
Δ𝑡 + 𝑓(𝑡, 𝑋𝑡 , 𝜋𝑡)Δ𝑡

 +
∂𝑉

∂𝜎
(𝑐Δ𝑡 + 𝑑Δ𝑍𝑡) +

1

2

∂2𝑉

∂𝜎2 (𝑐Δ𝑡 + 𝑑Δ𝑍𝑡)2

 +
∂2𝑉

∂𝜎 ∂𝑉
𝜌(𝑎Δ𝑡 + 𝑏Δ𝑊𝑡)(𝑐Δ𝑡 + 𝑑Δ𝑍𝑡) + 𝑜(Δ𝑡)]}

 (13) 

Since 𝑉 has differentiable and smooth properties, take Δ𝑡 → 0 under continuous form. Use tower 

property, quadratic variation and independence property, the HJB equation becomes: 

0 = sup
𝜋∈𝒜

  {
∂𝑉

∂𝑡
+

∂𝑉

∂𝑋
𝑎 +

1

2

∂2𝑉

∂𝑋2 𝑏2 +
∂𝑉

∂𝜎
𝑐 +

1

2

∂2𝑉

∂𝜎2 𝑑2 +
∂2𝑉

∂𝜎 ∂𝑋
𝜌𝑏𝑑 + 𝑓(𝑡, 𝑋𝑡 , 𝜋𝑡)}           (14) 

with terminal condition: 

𝑉(𝑇, 𝑋) = Φ(𝑋𝑇)                                                         (15) 

About equation (14), for every backward $dt$ from time 0, instantaneous utility function 𝑓 

increment is accumulated for the objective function 𝐽 (although its limit is 0); In addition, it also 

affects the time state 
𝜕𝑉

𝜕𝑡
, state process 

𝜕𝑉

𝜕𝑋
 and  

𝜕2𝑉

𝜕𝑋2, volatility state 
𝜕𝑉

𝜕𝜎
  and  

𝜕2𝑉

𝜕𝜎2, joint state 
𝜕2𝑉

𝜕𝜎𝜕𝑋
 at 𝑑𝑡 

moment. The impact of this moment on the state will continue until the next moment, until terminal 

time 𝑇 . As time goes by under optimal control, the value function of HJB equation, e.g. the 

corresponding PDE, remains unchanged since the left hand side of the equation is always 0. This 
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indicates from another perspective that the optimal control should be a dynamic expression rather 

than a fixed value under constant volatility, thus equation (14) calibrate model misspecification [8]. 

To this extent, the derivation of the HJB equation after calibrating model misspecification has 

been completed. For Merton (1969), the optimal control under model misspecification is: 

𝜋𝑚𝑖𝑠𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛
∗ = −

𝑎
∂𝑉

∂𝑋

𝑏2𝑋
∂2𝑉

∂𝑋2

                                                 (16) 

The optimal control under calibration is: 

𝜋𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
∗ = −

𝑎
∂𝑉

∂𝑋
+𝑐

∂𝑉

∂𝜎

𝑏2𝑋
∂2𝑉

∂𝑋2+𝑑2𝑋
∂2𝑉

∂𝜎2+2𝜌𝑏𝑑
∂2𝑉

∂𝜎 ∂𝑉

                                     (17) 

In fact, the total solving process is divided into five steps, which are summarized as follows: 

(1) Determine state process 𝑋𝑡; 

(2) Calculate HJB equation correctly (depend on constant volatility or stochastic volatility); 

(3) Take partial derivative of 
𝜕𝑉

𝜕𝜋
  and set it equal to 0 to get expression of 𝜋; 

(4) Make a suitable ansatz for value function 𝑉, it is usually based on structure and experience. 

For relatively simple optimal control problems, it can be solved explicit solution by mathematical 

method. However, if the form is more complex, it may not be able to find explicit solution, thus it 

can only be simulated by numerical method. 

(5) Substitute 𝜋 into step (4) and combine with terminal condition to obtain the explicit solution 

of value function 𝑉. 

3. Conclusion 

HJB equation is one of the classical methods for solving stochastic control problems, it is widely 

used in the field of financial mathematics. When we face various stochastic control problems, it is 

necessary to consider the characteristics of different stochastic processes to get the corresponding 

HJB equation. In this paper, we calibrate Merton (1969) model misspecification, use DPP and 

Taylor expansion to derive a general method for solving HJB equation and optimal control in the 

case of stochastic volatility. 
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