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Abstract: Power transformer is one of the most important components of power system. 

Maintaining its stable operation is an important guarantee for the normal operation of the 

power system. In recent years, prognostics and health management (PHM) has been 

introduced into the health management of power transformers. The key information about 

its operation is obtained by sensors, which provides a platform for intelligent management. 

At present, for the fault diagnosis and condition assessment of power transformers, due to 

the lack of original data feature parameters, the lack of data, and the uneven classification of 

existing data fault types, it is easy to distort the training model. To overcome the above 

difficulties, this paper proposes a power transformer condition assessment and fault 

diagnosis method based on generative adversarial network (GAN) and convolutional neural 

network (CNN). Through GAN, the original data feature parameters are amplified and 

generate the artificial data set. The data is trained together through CNN. Finally, the validity 

and superiority of the proposed method are verified by the measured data and the 

comparative experiment. 

1. Introduction 

According to the analysis of national power grid safety operation, power equipment fault is one of 

the main reasons affecting power grid safety [1], and power transformer as the key pivot equipment 

of the power grid system, its stable operation is an important basic guarantee for the safe and stable 

operation of the power system. Effective monitoring and evaluation of power transformer health 

status, reducing equipment maintenance costs, and ensuring the safety of power transmission and 

transformation, are of great significance to improve the reliability of the power system [2][3]. 

In recent years PHM has been introduced into the health management of power transformers[4], 

using advanced sensor technology, intelligent algorithms, and models to achieve an intelligent and 

automated system for system monitoring[5][6], prediction, and management. The implementation of 

PHM can effectively solve the drawbacks of traditional transformer health management methods and 

provide a platform for the introduction of intelligent transformer tracking and inspection solutions. 

With PHM technology, information about the transformer's operation can be obtained.  Utilizing 

rational processing and analysis, obtain the operating status of the power transformer, thus enabling 
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condition assessment and fault diagnosis of the transformer [7]. Dissolved Gas Analysis (DGA) is an 

important component of transformer maintenance based on Condition Based Maintenance (CBM), 

identifying faults and preventing unplanned transformer shutdowns. The rate of change of these levels 

can be used to determine the severity of the fault. However, the distribution characteristics of the gas 

content in the oil are difficult to predict and the mapping between the dissolved gas content or ratio 

and the type of fault is extremely complex[8]. However, most of the traditional diagnostic methods 

are limited to threshold diagnosis, and there are problems such as missing codes and over-absolute 

codes, resulting in low reliability of diagnostic results, which can hardly meet the requirements of 

power transformer equipment diagnosis in today's power grids. Therefore, in recent years, more and 

more active detection methods and matching intelligent algorithms have been introduced into the 

research of power transformer system maintenance. For example, a hierarchical power transformer 

fault diagnosis model was developed based on SVM[9], but the SVM algorithm itself has difficulties 

in solving multi-classification problems and is sensitive to the choice of parameters and kernel 

functions. A plain Bayesian algorithm could be used to calculate the prior probability of training 

samples and the posterior probability of test samples for fault diagnosis[10], but the plain Bayesian 

algorithm is not good when the number of attributes is large or the correlation between attributes is 

large. The neural network model based on different neural network modules in branches of the 

decision tree is also established as the basic classifier to realize the multi-resolution identification of 

faults [11], however, it is easy to ignore the correlation between attributes and over-fit. 

In summary, there are many methods for assessing and diagnosing the condition of power 

transformers, but all of them have obvious shortcomings in certain aspects. Therefore, it is of great 

theoretical significance and engineering value to establish a more comprehensive and accurate 

prediction model for power transformers based on multiple factors and indicators, taking into account 

the working condition of transformers under different conditions, and to integrate the advantages of 

different algorithms to improve the ability of power transformers to prevent and respond to faults, 

extend transformer life and improve the reliability of power supply to the grid. Given the above 

shortcomings and considering the small number of original feature parameters of DGA data, the lack 

of relevant data, and uneven data distribution, this paper uses GAN training to generate artificial data 

sets, expand the original data to improve the model training effect, and then use CNN to train for fault 

diagnosis and operational status detection. The validity and superiority of this method are verified by 

the experiments. 

2. Principal Analysis 

2.1 Basic Operation State and Fault Defect Analysis of Transformer 

2.1.1 Operation Principle of Power Transformer 

The power transformer is a kind of static electrical primary equipment that uses insulating oil as 

an insulating medium and consists of the iron core, coil, voltage regulating switch, oil tank, and so 

on. It converts one grade of voltage into another grade of voltage with the same frequency through 

electromagnetic coupling. The power transformer is one of the main components of power system. 

Transformer is used for power transmission and reception, and the autotransformer is used to couple 

power systems with different voltage levels. Transformer plays an important role in long-distance 

power transmission, as shown in Figure 1. 
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Figure 1 Schematic Diagram of Power Transformer Structure 

2.1.2 Characteristics and Typical Detection Methods of Power Transformer Fault 

The characteristic quantity of gas in power transformer oil is one of the most important 

characteristic parameters in the process of fault analysis. DGA has occupied the dominant position of 

power transformer fault diagnosis in China's power industry since it was formally introduced in China.  

Transformer oil is a mixture of many hydrocarbon molecules with different molecular weights. 

Electrical or thermal faults can break some C-H bonds and C-C bonds, accompanied by the generation 

of a small number of active hydrogen atoms and unstable free radicals of hydrocarbons. These 

hydrogen atoms or free radicals are rapidly recombined through complex chemical reactions to form 

H2 and low molecular hydrocarbon gases, such as CH4, C2H6, C2H4, C2H2, etc. and may also generate 

solid particles of carbon and hydrocarbon polymers. The oxidation of oil also produces a small 

amount of CO and CO2, which can accumulate to a significant amount for a long time.  

Therefore, different fault types and different fault mechanisms often produce different gases. By 

detecting the gas composition and content in the oil, the operating state of the power transformer can 

be largely reflected. DL/T722-2000 "Guidelines for Analysis and Determination of Dissolved Gases 

in Transformer Oil" summarizes the main characteristic gases and secondary characteristic gases 

generated by different fault types in Table 1. 

Table 1 Fault Type with Gas Component 

Fault types 
Main gas 

components 
Secondary gas components 

Oil overheating CH4,C2H4 H2,C2H6 

Oil and paper overheating CH4,C2H4,CO,CO2 H2,C2H6 

Partial discharge in Oil-Paper 

Insulation 
H2, CH4,CO CH4,C2H6,CO2 

Spark discharge in oil H2,C2H2 / 

Oil arc H2,C2H2 CH4,CH4,C2H6 

Oil and paper arc H2,C2H2, CO,CO2 CH4,CH4,C2H6 

2.2 Construction of fault detection model based on GAN and CNN 

2.2.1 Sample Expansion Based on GAN 

As a new type of deep generative model, GAN was formally proposed in 2014, and its core idea 

comes from zero-sum game theory. The main components of GAN include Generator (G) and 

Discriminator (D). The main responsibility of the generator is to learn the potential distribution 

characteristics of real data and synthesize new artificial samples. The main responsibility of the 

discriminator is to identify real data and generated data and to maximize the accuracy of 
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discrimination. The generator and discriminator continuously improve their generation ability and 

discrimination ability through confrontation training. The goal of optimization is to achieve the Nash 

equilibrium point between the two.  

To learn the generator's distribution of data x, a priori input noise variable pz(z) is defined, and then 

represent the mapping to the data space as P(z; θg). Then a second output single scalar multilayer 

perceptron D(x; θd) is defined as: 

( )
( )

( ) ( )

data

data g

P x
D x

P x P x



                              (1) 

In the formula, D(x) denotes the probability that x is from a real sample rather than an artificial 

sample. We train D to maximize the probability that the training sample is from the generator or the 

real sample. We also train G to minimize log(1-D(G(z))), so that G can maximize the generation of 

artificial samples that D cannot discriminate. In other words, D and G play an adversarial game 

through the value function V(G,D) : 

( ) ( )min max ( , ) [log ( )] [log(1 ( ( )))]
data zx p x z p z

G D
V D G E D x E D G z               (2) 

In the training process, the Gaussian distribution noise z is first generated in the noise space. 

Through the generator, the output vector of the same dimension as the power transformer operating 

state evaluation sample x is calculated by the multi-layer neural network. The random noise generated 

in the noise space is mapped to the evaluation feature space through the generator, to obtain a pseudo-

sample g. By inputting the real sample x and the artificial sample g into the D at the same time, the 

discriminator D is trained to judge the probability that the real sample and the artificial sample are 

real data as much as possible. Usually, this process will go through k times. Secondly, generator G is 

trained by a multi-layer neural network, which requires that the probability of the generator 

successfully predicting the real and artificial samples is as low as possible. By this operation, the 

generator can generate a sample Pg close to the real data distribution Pdata in an indirect way. Usually, 

this training process is performed once for k times in step one. By alternating steps 1 and 2 for several 

rounds, until G and D can not continue to improve, that is Pdata=Pg. Now D cannot distinguish the 

real sample distribution from the artificial sample distribution, D(x)=1/2, which is Nash equilibrium. 

2.2.2 Fault Diagnosis and State Analysis Based on CNN  

 

Figure 2 Schematic Diagram of CNN 

CNN consists of the input layer, convolution layer, pooling layer, and fully connected layer. 

Among them, the convolution layer can generate a set of parallel feature maps to extract input features; 

the pooling layer reduces the amount of data by downsampling, and periodically inserts the pooling 

11



layer between the convolutional layers to suppress overfitting; the activation function is used to 

enhance the nonlinear characteristics of the network, such as sigmoid function and ReLU function. 

Finally, after several convolutions and maximum pooling layers, the inference process in the neural 

network is completed by the fully connected layer to identify features, as shown in Figure 2.  

The convolution layer aims to extract features by the convolution calculation of the convolution 

kernel and the input feature map. The convolution process can be defined as: 

1( )
i

k k k k

j i ij j

i M

X f X W b



                            (3) 

In the formula: 𝑋𝑖
𝑘  and 𝑋𝑖

𝑘−1  represent the output and input characteristic graphs of the 𝑘  

layer network respectively; 𝑀𝑖 represents the set of feature maps; 𝑊𝑖𝑗
𝑘 represents the weight matrix 

of the convolution kernel; 𝑏𝑗
𝑘denotes the bias term; 𝑓(∙) is the activation function. The activation 

function aims to transform the original linear inseparable multidimensional features into another 

space and enhance the linear separability of these features. The activation function used in this paper 

is the ReLu function. 

The pooling layer aims to reduce the parameters of the neural network and further compresses the 

feature map by downsampling. The common pooling methods are average pooling and maximum 

pooling, which take the average and maximum values in the perceptual domain as the output 

respectively. This paper adopts the maximum pooling method because observing the maximum value 

of different features rather than the average value often gives more information. The maximum 

pooling formula is as follows:  

max
ij

ij k
k U

P a


                                  (4) 

Where Pij is the output of the maximum pooling, Uij is the pooling window, and ak is the element 

in the pooling window. 

3. Model Construction and Result Analysis 

3.1 GAN-based Dataset Expansion 

3.1.1 Model Establishment 

Python is used to import transformer state data, input the adversarial neural network model, train 

the model, define the size of each batch of training data, the number of training times, and set other 

relevant hyperparameter settings. The method of simultaneous training of the generator and 

discriminator is adopted to carry out adversarial training, and finally, Nash equilibrium is reached, 

and the trained model is saved.  

After the GAN model is obtained, the training is generated for the lack of data, and the relevant 

data is exported. KSComplement and TVComplement are used to evaluate the quality of the attributes 

and compare the data to complete the evaluation of the model effect. 

3.1.2 Parameter Selection 

GAN has many hyperparameters that control its learning behavior and may affect the performance 

of the model, including the quality of the generated data and the computation time.  

Epochs and batch size which are the number of iterations performed to optimize their parameters, 

and the number of samples used in each step. It is set to 300 and 500 respectively. Whether the 

logarithmic frequency of the classification level used in conditional sampling is set to True. This 
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parameter affects how the model handles the frequency of the classification values used to adjust the 

remaining values. The size of the random sample passed to the generator is set to 128. The size of the 

output sample for each residual and the size of the output sample for each discriminator layer are set 

to (256, 256). The learning rate of the generator and the learning rate of the discriminator are set to 

2e-4. The weight attenuation of the generator and discriminator of the Adam optimizer is set to 1e-6. 

3.1.3 Model Results and Evaluation 

KSComplement is used to calculate the mass fraction of each component gas to evaluate its data 

quality[13]. Firstly, the numerical distribution is transformed into a Cumulative distribution function 

and used Kolmogorov-Smirnov statistic to calculate the maximum difference between the two CDFs. 

The empirical distribution function 𝐹𝑛  for 𝑛 independent and identically distributed ordered 

observations 𝑋𝑖 is defined as 

( , ]

1
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n

n x i

i

F x X
n





                               (5) 

To test two one-dimensional probability distributions, the Two-sample Kolmogorov-Smirnov test 

is adopted. In this case, the Kolmogorov-Smirnov statistic is: 

, 1, 2,sup | ( ) ( ) |n m x n mD F x F x                           (6) 

For Fault Type categorical variables, we take the TVComplement test[14]. This test computes the 

Total Variation Distance (TVD) between the real and synthetic columns. To do this, it first computes 

the frequency of each category value and expresses it as a probability. The TVD statistic compares 

the differences in probabilities, as shown in the formula below: 

1
( , ) | |

2
R S R S 






                             (7) 

Finally, through the analysis and test of each index of the data, the matching degree and quality 

index of each attribute is shown in Table 2. 

Table 1: Components Quality Score and Assessment Methods 

Column Metric Quality Score 

H2 KSComplement 0.584804 

CH4 KSComplement 0.888634 

C2H6 KSComplement 0.928268 

C2H4 KSComplement 0.724497 

C2H2 KSComplement 0.881778 

Fault Type TVComplement 0.7347 

Next, to further compare the similarity between the original and generated data, an analysis of the 

orientation between the indicators was carried out. The correlation between the real data and the 

synthetic data will be compared according to the spearman correlation analysis, as shown in Fig.3. 
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Figure 3 Spearman Correlation Analysis Comparison 

Next, we compare the numerical columns with the classification columns by box-plot in Fig.4. By 

drawing Fault Type and C2H6, we can see that the synthetic data matches the correlation between 

these columns. By drawing the items with higher scores of CH4 and C2H4 in Fig.5, we can see that 

the comprehensive data are completely consistent with the trend. Through the above analysis, our 

GAN shows excellent performance in the expansion of the original data set and can improve the 

overall effect of the model. 

 

Figure 4 Real vs Synthetic Data distribution box plot 

 

Figure 5 Real vs Synthetic Data distribution scatter diagram 

3.2 Fault Detection and State Evaluation Model Based on CNN 

3.2.1 Model Establishment  

The specific transformer fault diagnosis steps of CNN are as follows: Import the transformer state 
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data, divide the input data into the training set and test set, input the training set into the CNN model 

according to the batch, and train the model. After the diagnostic model is obtained, the test set is input 

into it for testing and verification. Because the division of the training set and the test set is random, 

the use of such data for testing can better reflect the quality of model training, and the test accuracy 

is obtained through training. Finally, the relevant data is derived, confusion matrix of the contrast 

CNN is generated to complete the evaluation of the model effect. 

3.2.2 Model Training and Implementation 

Through CNN, the original data set and the amplified data set are trained for multiple rounds 

respectively. Through model training, the gas content of each component is used to predict and 

classify the fault types. Here, some training results of the original data set are selected in Table 3. 

Table 2 Partial Failure Prediction Results 

Prediction result Fault Type H2 C2H4 C2H6 CH4 C2H2 

C C 123 16 178 257 197 

D E 170 430 161 167 103 

D D 25 178 165 172 138 

E E 747 4589 47 48 40 

C C 421 351 124 128 101 

3.2.3 Model Effect Comparison 

To better compare the training effects of the two, we trained multiple rounds respectively and 

compared the accuracy. The results are shown in Fig.6. In the final model prediction accuracy, the 

amplified data set is superior to the original data set in all rounds of prediction. 

 

Figure 6 Accuracy Analysis and Comparison Before and After GAN Application 

To better demonstrate the diagnostic effect of the model on each fault category, we select the same 

round of prediction results, and quantitatively analyze the test results of the two model strategies for 

each category through the confusion matrix, as shown in Fig.7. From the diagram, it can be seen that 

the model trained using the amplified data set has higher diagnostic accuracy for each category and 

has a good effect.  

From the above analysis, it can be concluded that the CNN model trained using the GAN-amplified 

data set has obvious advantages in classification and diagnostic accuracy compared with the model 

generated by the original data. 
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Figure 7 Comparison of Confusion Matrix 

4. Conclusion 

Aiming at many defects of traditional power transformer fault diagnosis and state evaluation, this 

paper proposes a research method combining GAN and CNN in deep learning to realize fault 

diagnosis. Compared with the traditional model, the error rate is too large, the existing data is too 

dependent, and the uneven distribution of data cannot be effectively processed. The model proposed 

in this paper can solve the above problems well, and the universality and popularization of the 

transformer fault diagnosis model are stronger than the traditional model.  

The GAN is trained by the existing data, and the amplified data and the original data are input into 

the CNN to diagnose the actual data of the power transformer in a certain area. It verifies the powerful 

advantages of the GAN model proposed in this paper in solving the problem of data shortage and 

imbalance and the good performance of CNN in fault identification. 
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