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Abstract: Since ancient times, China has been a major agricultural country and is now the 

world's top food producer. With the second largest population in the world, it is of great 

relevance to investigate the factors influencing grain production. In this paper, we look at the 

main factors that affect grain yield. A simple multiple linear regression analysis was used to 

develop a model with fertiliser application, sown area, flooded area, farm machinery power 

and agricultural labour as independent variables and total annual grain production as the 

dependent variable. The resulting model fitted well and the observations were independent 

of each other. However, there was serious covariance between the variables, so we tested the 

model and concluded that the model satisfied the chi-squaredness, but there was more serious 

covariance between the variables, which affected the model building and could cause model 

distortion. So finally we build stepwise regression and ridge regression models respectively 

to eliminate the multicollinearity among the variables in order to optimise the model. 

1. Design questions 

Table 1: Summary of data relating to grain production 

Year 

Grain 

production 

(million 

tonnes) 

y 

Fertilizer 

application 

(million kg) 

𝒙𝟏 

Sown area 

(thousand 

hectares) 

𝒙𝟐 

Damaged 

area 

(Thousands 

of hectares) 

𝒙𝟑 

Agricultural 

machinery 

power (million 

kilowatts) 

𝒙𝟒 

Agricultural 

labour force 

(ten thousand 

people) 

𝒙𝟓 

2000 38728 1659.8 114047 16209.3 18022 31645.1 

2001 40731 1739.8 112884 15264 19497 31685 

2002 37911 1775.8 108845 22705.3 20913 30351.5 

2003 39151 1930.6 110933 23656 22950 30467 

2004 40298 1999.3 111268 20393.7 24836 30870 

2005 39408 2141.5 110123 23944.7 26575 31455.7 

2006 40755 2357.1 112205 24448.7 28067 32440.5 

2007 44624 2590.3 113466 17819.3 28708 33330.4 

2008 43529 2805.1 112314 27814 29389 34186.3 

2009 44266 2930.2 110509 25894.7 30308 34037 

2010 45649 3151.9 110509 23133 31817 33258.2 

2011 44510 3317.9 109544 31383 33802 32690.3 

2012 46662 3593.7 110060 22267 36118 32334.5 

2013 50454 3827.9 112548 21234 38546 32260.4 

Data source: China Statistical Yearbook 
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China is a large agricultural country and has the second largest population in the world, so it is of 

great practical importance to investigate the factors influencing grain yield [1]. Grain production is 

used as the dependent variable, and fertiliser application, sown area, disaster area, farm machinery 

power and agricultural labour are used as independent variables. A multiple linear regression analysis 

is conducted on the data related to grain production from 2000 to 2013 in China to explore the 

influencing factors of grain yield, and some of the data are show as table 1. 

2. Model Assumptions and Establishment 

2.1 Regression analysis 

Regression analysis is a mathematical and statistical method that deals with the statistical 

correlation of variables [2]. The basic idea of regression analysis is that although there is no strict, 

deterministic functional relationship between the independent and dependent variables. It is possible 

to find a mathematical expression that best represents the relationship between them. Regression 

analysis can be classified according to the number of dependent variables and independent variables, 

and can be divided into linear regression analysis and non-linear regression analysis according to the 

functional expressions of the dependent and independent variables. The linear regression model of 

random 𝑦 and 𝑥1,𝑥2,...𝑥𝑘 the variables is as follows Equation. 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 + 𝜀                    (1) 

Where 𝛽0, 𝛽1, ..., 𝛽𝑘 are 𝑘 + 1 unknown parameters, β0, which is called regression constant, 

and 𝛽1, . . . , 𝛽𝑘 are called regression coefficient. 

The following basic assumptions are satisfied:  

(1) Explanatory variable x1 , x2 ,... xk  are non-random variables, and the observed value 

xi1,xi2,...xik are constants. 

(2) Equivariances and irrelevant assumptions (Equation 2). 

{

𝐸(𝜀𝑖) = 0, 𝑖 = 1,2, … , 𝑛

𝑐𝑜𝑣(𝜀𝑖 , 𝜀𝑗) = {
𝜎2, 𝑖 = 𝑗
0,   𝑖 ≠ 𝑗 

 𝑖, 𝑗 = 1,2, … , 𝑛 
                    (2) 

2.2 Correlation analysis 

Correlation analysis is a statistical method to study the correlation between random variables by 

studying whether there is a certain dependency relationship between phenomena and exploring the 

correlation direction and degree of the specific dependency phenomenon. Correlation is a kind of 

non-deterministic relation, which is described by correlation coefficient r. 

| r | > 0.95 There was a significant correlation. 

| r | ≥ 0.8 High correlation. 

0.5 ≤ | r | < 0.8 Moderate Correlation. 

0.3 ≤ | r | < 0.5 Low correlation. 

| r | < 0.3 The relationship is so weak that it is considered irrelevant. 

Spearman rank correlation analysis was used in this paper, which is suitable for small sample size. 

The calculation formula is p = 1 −
6 ∑ di

2

n3−n
. 

2.3 Stepwise regression 

When there are many independent variables, some of these factors may not have a significant 
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effect on the corresponding variable and the x's may not be completely independent of each other and 

may have various interactions. In such cases, stepwise regression analysis can be used to screen the 

x-factors[3]. 

The multiple regression model thus established will work better. Stepwise regression analysis 

begins by establishing the total regression equation between the dependent variable y  and the 

independent variable x. The total equation and each independent variable are then hypothesis tested. 

When the total equation is not significant, it indicates that the linear relationship of that multiple 

regression equation does not hold. And when one of the independent variables does not have a 

significant effect on y, it should be removed and rebuilt[4]. The multiple regression equation that 

does not contain the factor is screened out to identify the factor that has a significant effect as the 

independent variable, and the optimal regression equation is created. The more independent variables 

the regression equation contains, the larger the regression sum of squares, the smaller the residual 

sum of squares and consequently the smaller the residual square. The error in the predicted values is 

also smaller and the better the model fit [5]. 

2.4 Ridge regression  

Ridge regression is a biased estimation regression method dedicated to the analysis of collinear 

data. It is actually an improved least squares estimation method. By giving up the unbias of the least 

squares method, the regression coefficient is more in line with the reality and more reliable regression 

method at the cost of losing part of the information and reducing the accuracy. 

Adding a penalty term to the objective function of a linear regression model. 

J(β) = ∑(y − Xβ)2 + ∑ λβ2                           (3) 

To solve for the minimum of the objective function, you need to find the derivative of it and make 

the derivative function 0. 

𝜕𝐽(𝛽)

𝜕𝛽
= 2(𝑋′𝑋 + 𝜆𝐼)𝛽 − 2𝑋′𝑦 = 0                        (4) 

The problem of minimizing the objective function value J(B) of the ridge regression model is 

equivalent to 

arg 𝑚𝑖𝑛 ∑(𝑦 − 𝑋𝛽)2 ,    ∑ 𝛽2 ≤ 𝑡                         (5) 

3. Analysing the data 

3.1 Plotting matrix scatter plots 

 

Figure 1: Matrix scatter plot 
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Analysis: Figure 1 is a matrix scatter plot of the dependent variable and all independent variables. 

The first row of the graph shows that there is a more obvious linear relationship between fertiliser 

application, farm machinery power and the dependent variable, while the remaining variables do not 

have an obvious linear relationship with the dependent variable, and their effects are not significant, 

as shown in the following specific analysis. 

3.2 Linear regression analysis 

We first set up a multiple linear regression equation between the respective variables and the 

dependent variable to initially analyse this problem, and the following are the outputs (Table 2). 

Table 2: Descriptive statistics 

 N 
Minimal 

Value 

Maximum 

Value 
Mean Value 

Standard 

Deviation 
Variance 

x1 14 1659.8 3827.9 2558.636 724.5038 524905.802 

x2 14 108845.0 114047.0 111375.357 1556.4360 2422493.016 

x3 14 15264.0 31383.0 22583.336 4351.5860 18936300.604 

x4 14 18022.0 38546.0 27824.857 6153.9000 37870484.901 

x5 14 30351.5 34186.3 32215.136 1220.0434 1488505.872 

Number of valid 

cases (column) 
14      

The table above briefly describes the maximum and minimum values, mean values, variances and 

standard deviations of each variable. 

Table 3: Model summary 

Model R R2 Adjusted R2 

Errors in 

standard 

estimates 

Durbin-Watson 

1 0.987a 0.975 0.959 731.8312 2.132 

The fitting effect of this model can be obtained from the table 3. The adjusted R2 of the fourth 

column is 0.959. It can be seen that the five variables in this model can explain 95.9% of the model 

changes, so the fitting effect of this model is good. The Durbin-Watson test value in the table is 2.132. 

Generally, the test values are distributed between 0 and 4, and the closer they are to 2, the more likely 

they are to be independent of each other. That is, the observed values of simple linear regression in 

this study are mutually independent. 

Table 4: Variance analysis table 

Model Quadratic Sum 
Degree of 

freedom 
Mean square F Significance 

1 

Regression 165834737.540 5 33166947.508 61.928 0.000b 

Residual 

error 
4284615.317 8 535576.915   

Aggregate 170119352.857 13    

As can be seen from Table 4, the significance of F test (P value) =0.000<0.01. Therefore, it can be 

considered that the linear relationship established by each variable and dependent variable has 

significant statistical significance at the significance level of 0.01. 

It can be seen from the significance column of the above table 5 that only the significance of 

variable x1, x3 are less than 0.05, indicating that there is a significant linear relationship between 

these two variables and y. From the VIF value, a value of x1, x4 greater than 10 indicates that there 

should be multicollinearity. The regression model can be obtained from the table as follows. 
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𝑦 = 5.137𝑥1 + 0.226𝑥2 − 0.2𝑥3 + 0.008𝑥4 + 0.147𝑥5 + 3923.229 

In conclusion, the model has good fitting effect and statistical significance. However, not all 

variables are significant and there may be multicollinearity between variables, so the model needs to 

be tested. 

Table 5: Regression coefficient table 

Model 

Unstandardized 

coefficient 

Standardizatio

n coefficient 
t significance 

Collinear statistics 

B 
Standard 

error 
Beta tolerance VIF 

1 

constant 

quantity 
3923.229 20607.655  0.190 0.854   

x1 5.137 1.500 1.029 3.425 0.009 0.035 28.658 

x2 0.226 0.209 0.097 1.077 0.313 0.388 2.579 

x3 -0.200 0.079 -0.241 -2.541 0.035 0.351 2.852 

x4 0.008 0.172 0.014 0.047 0.964 0.037 27.168 

x5 0.147 0.270 0.050 0.543 0.602 0.379 2.640 

a. dependent variable:Y 

4. Model testing 

4.1 Cointegration test 

Table 6: Collinear diagnosis table 

Model 
Dimen

sion 

Eigenvalu

e 

Conditional 

index 

Variance Proportion 

(constant) x1 x2 x3 x4 x5 

1 

1 5.911 1.000 0.00 0.00 0.00 0.00 0.00 0.00 

2 0.066 9.485 0.00 0.02 0.00 0.00 0.00 0.00 

3 0.022 16.393 0.00 0.00 0.00 0.44 0.00 0.00 

4 0.001 68.940 0.00 0.58 0.00 0.02 0.72 0.05 

5 0.000 118.712 0.05 0.39 0.01 0.04 0.27 0.69 

6 3.971E-5 385.802 0.95 0.02 0.99 0.50 0.01 0.26 

a. Dependent variable:Y 

The condition index can be used to judge whether multicollinearity exists and the severity of 

multicollinearity. Eg. It is generally thought that 0<k<10, there is no multicollinearity. When 10≤k＜
100, there is strong multicollinearity. Severe multicollinearity exists when k≥100. It can be seen from 

table 6, 𝑘5 = 118.712,  𝑘6 = 385.802, that serious multicollinearity exists in this problem. It can be 

roughly concluded from the variance ratio x2 = 0.99that there should be multicollinearity between 

this variable and other variables. 

4.2 Test autocorrelation 

As can be seen from Table 7, usually the correlation coefficient between variables is below 0.5. 

As can be seen from the above table, x1 is highly correlated with x4,x5, and x2 is highly correlated 

with x3,x4. Therefore, multicollinearity exists among these variables, which will cause model 

distortion. 
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Table 7: Spearman correlation test 

 x1 x2 x3 x4 x5 

Spearman 

Rho 

x1 

Correlation index 1.000 -0.286 0.420 1.000** 0.604* 

Sig.(two-tailed) 0.00 0.322 0.135 0.00 0.022 

N 14 14 14 14 14 

x2 

Correlation index -0.286 1.000 -0.557* -0.286 0.174 

Sig.(two-tailed) 0.322 0.00 0.039 0.322 0.552 

N 14 14 14 14 14 

x3 

Correlation index 0.420 -0.557* 1.000 0.420 0.393 

Sig.(two-tailed) 0.135 0.039 0.00 0.135 0.164 

N 14 14 14 14 14 

x4 

Correlation index 1.000** -0.286 0.420 1.000 0.604* 

Sig.(two-tailed) 0.00 0.322 0.135 0.00 0.022 

N 14 14 14 14 14 

x5 

Correlation index 0.604* 0.174 0.393 0.604* 1.000 

Sig.(two-tailed) 0.022 0.552 0.164 0.022 0.00 

N 14 14 14 14 14 

**. At Level 0.01 (two-tailed), Significant correlation. 

*. At Level 0.05 (two-tailed), Significant correlation. 

4.3 Heteroscedasticity test 

 

Figure 2: Residual graph 

Table 8: Residual statistics table 

 Minimal Value Maximum Value Mean Value 

Standard 

Deviation 

number of 

cases 

Predicted value 37673.660 49767.949 42619.714 3571.6268 14 

residual error -1126.1721 686.0491 0.0000 574.0956 14 

Normal expected 

value 

-1.385 2.001 0.000 1.000 14 

Standardized 

residual 

-1.539 0.937 0.000 0.784 14 

a. Dependent variable: Y 

The Figure 2 is the residual graph, from which it can be seen that the standardized residual 

randomly distributed around the 0 horizontal line, without an obvious trend, and its fluctuation range 

basically remained stable, and did not change with the change of the standardized predicted value, so 
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it can be considered that the problem has homogeneity of variance. And table 8 shows the maximum 

and minimum residuals and other statistics. 

It can be concluded from the above model test that the model meets the homogeneity of variance, 

but there is a serious collinearity among variables, which affects the establishment of the model and 

causes the distortion of the model. So next we use some processing methods to eliminate 

multicollinearity between variables to optimize the model. 

5. Elimination of covariance 

5.1 Stepwise regression 

Table 9: Variables entered/removed 

Model Input variable Removed variable Method 

1 x1 0.00 Step (condition: probability of F to be input 

<=.050, probability of F to be removed >=.100) 

2 x3 0.00 Step (condition: probability of F to be input 

<=.050, probability of F to be removed >=.100) 

a. Dependent variable: Y 

As can be seen from Table 9, the final variables selected by stepwise regression method are 

fertilizer application amount x1 and disaster area x3. 

Table 10: Model summary 

Model R R2 Adjusted R2 

Errors in standard 

estimates 

Durbin-

Watson 

1 0.945a 0.892 0.883 1236.13747  

2 0.982b 0.964 0.958 745.31311 2.189 

a. Prediction variable: (constant), x1 

b. Prediction variable: (constant), x1, x3 

c. Dependent variable:Y 

As can be seen from Table 10, the third column in the table is the square of the correlation 

coefficient, which measures the overall fit degree of the regression equation and expresses the overall 

correlation degree between the dependent variable and the independent variable. It shows that Model 

1 and Model 2 can explain 88.3% and 95.8% of the total profit of high-tech industry respectively. 

Because the second model has a better fitting degree, Model 2 is chosen to establish the regression 

equation. In the fifth column, the Durbin-Watson statistic is 2.189, close to 2, indicating that there is 

no obvious correlation between residuals and independence is satisfied. 

Table 11: ANOVA analysis of variance 

Model Quadratic Sum 

Degree of 

freedom Mean square F Significance 

1 Regression 151782922.852 1 151782922.852 99.332 0.000b 

Residual error 18336430.005 12 1528035.834   

Aggregate 170119352.857 13    

2 Regression 164008944.853 2 82004472.427 147.625 0.000c 

Residual error 6110408.004 11 555491.637   

Aggregate 170119352.857 13    

a. Dependent Variable:Y 

b. Prediction variable: (constant), x1 

c. Prediction variable: (constant), x1, x3 

Table 11 is the variance analysis table, and the F test of variance analysis is the significance test 

of regression equation. The original assumption is that all independent variables have no influence 

51



on dependent variables. Based on this assumption, it is observed that the F statistic of Model 2 is 

147.625, and the corresponding significance level is 0.000 < 0.05, that is, whether all variables in the 

model are statistically significant. Further testing of the respective variables is needed. 

 

Figure 3: P-P diagram 

From Figure 3, we can see that the standard residuals are all around a straight line, indicating that 

the residuals basically obey the normal distribution are evenly distributed and the fit is good. 

Table 12: Regression coefficient significance test table 

Model 

Unstandardized 

coefficient 

Standardization 

coefficient 
t Significance 

Collinear statistics 

B 
Standard 

error  
Beta tolerance VIF 

1 

Constant 

quantity 
30552.485 1255.037  24.344 0.000   

x1 4.716 0.473 00.945 9.967 0.000 1.000 1.000 

2 

Constant 

quantity 
34457.363 1124.903  30.631 0.000   

x1 5.397 0.320 1.081 16.862 0.000 0.795 1.258 

x3 -0.250 0.053 -0.301 -4.691 0.001 0.795 1.258 

a. Dependent variable:Y 

Table 12 shows regression coefficient and significance test, while t test is significance test for a 

single independent variable. In Model 2, the significance values of the independent variables of 

fertilizer application amount and disaster area are all lower than the significant level of 0.05, so the 

coefficient of each variable is very significant and has statistical significance, which cannot be 

removed from the regression equation. The stepwise regression equation is as follows. 

𝑦 = 3953.463 + 0.226𝑥2 + 0.021𝑥5 

The value of the last column is VIF, and it can be seen that the VIF values corresponding to x1 and 

x3 are all less than 10, so there is no multicollinearity, indicating that this method has well solved the 

collinearity problem between independent variables. 
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5.2 Ridge Regression 

 

Figure 4: Ridge trace map 

As shown in Figure 4, the abscissa is the value of ridge parameter k, and the ordinate is the 

coefficient of the independent variable. The change of coefficient is relatively stable, but its absolute 

value is always small. It can be removed from the independent variable according to the principle of 

ridge regression variable selection. And because there is a strong collinearity between and, so the two 

variables can be retained one. Compared with, the coefficient is small, so the variable is eliminated. 

Ridge regression analysis was performed again. 

Table 13: Table of Ridge parameters after elimination of variables 

K RSQ x1 x3 x5 

0 0.97106 1.022065 -0.30969 0.10484 

0.05 0.96681 0.93903 -0.26851 0.133923 

0.1 0.95693 0.871331 -0.2347 0.154281 

0.15 0.94415 0.814823 -0.20649 0.168689 

0.2 0.92992 0.766758 -0.18263 0.178912 

… … … … … 

0.7 0.78987 0.503396 -0.06194 0.195022 

0.75 0.77784 0.487944 -0.05589 0.193567 

0.8 0.76618 0.473549 -0.0504 0.191948 

0.85 0.75488 0.460096 -0.04543 0.190205 

0.9 0.74393 0.447488 -0.0409 0.188366 

0.95 0.73329 0.43564 -0.03676 0.186458 

1 0.72297 0.42448 -0.03298 0.184499 

The first column in Table 13 is ridge parameter k. The software default k value ranges from 0-1 

and is 0.05. There are 21 k values in total. The second column is the decision coefficient R2, and the 

third to fifth column is the standardized ridge regression coefficient, in which the value corresponding 

to the first row k=0 is the standardized regression coefficient estimated by the ordinary least squares. 

It can be seen from Figure 5 that when the ridge parameter k=0.2, the ridge trace map has been 

basically stable. Let's look at the complex coefficient of determination. When k=0.2, it is still large, 

so the ridge parameter k=0.2 can be selected, and then the ridge regression can be re-performed with 

the given k=0.2. 
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Figure 5: Ridge trace map after removing variables 

 

Figure 6: Ridge regression analysis results 

As can be seen from Figure 6, the adjusted R square of the model is 0.9847, indicating that several 

variables of the model explain 98.47% of the total population. The standardized Ridge regression 

equation of y pairs, which proves that the model has a good fit, is shown below. 

�̂� = 0.270727𝑥1 + 0.3060572𝑥3 + 0.3615795𝑥5 

The unstandardized ridge regression equation is shown below. 

�̂� = 3.2562242 + 4.4615809𝑥1 + 0.5767566𝑥3 + 0.4769212𝑥5 
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5.3 Model Comparison 

Table 14: Comparison table of regression models 

 Stepwise regression model Ridge regression model 

The fitted regression equation p value <0.001 <0.001 

The number of arguments it contains 2 3 

Adjusted R2 0.958 0.985 

Both regression models were good at addressing the high level of multicollinearity between the 

independent variables in the original model. Both fitted regression equations have p-values < 0.001 

and are statistically significant overall (table 14). The number of independent variables in the stepwise 

regression model is two and the number of independent variables in the ridge regression model is 

three, and the stepwise regression model is better than the ridge regression model based on the 

principle that fewer independent variables is a better model. The adjusted R2 for the stepwise 

regression model is 0.958 and the adjusted R2 for the ridge regression model is 0.985. The ridge 

regression model is larger than the principal component regression model, and the adjusted R2 reflects 

the goodness of fit of the model. 

In summary, if this is intended to explain the information of the original variables through fewer 

variables, a stepwise regression model can be used, with the regression equation as follows. 

�̂� = 3.2562242 + 4.4615809𝑥1 + 0.5767566𝑥3 + 0.4769212𝑥5 

6. Conclusion 

In this paper, in order to study the factors affecting grain production in China, we took annual grain 

production as the dependent variable y, and fertilizer application, sown area, disaster area, agricultural 

machinery power and agricultural labour as the main factors affecting grain production. Using SPSS, 

a multiple regression model was established and the model fit was good, with the observations being 

independent of each other. However, there was a serious problem of covariance among the variables, 

so we tested the model for heteroskedasticity, autocorrelation and covariance, and concluded that the 

model satisfied variance chi-square, but there was more serious covariance among the variables, 

which affected the establishment of the model and could cause model distortion. So we built stepwise 

regression and ridge regression models respectively to eliminate the effect of multicollinearity 

between variables on the model. It was concluded that if one wanted to explain the information of the 

original variables through fewer variables, one could use a stepwise regression model in which the 

fertiliser application and the area affected by the disaster were the main factors affecting grain yield. 

If one wants to use more information about the variables to obtain a better-fitting model, one can 

choose a ridge regression model, in which fertiliser application, disaster area and agricultural labour 

are the main factors influencing yield. 
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