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Abstract: This paper proposes a fisheye camera calibration method based on multiple 

chessboard detection. To address the complexity and multiple-frame requirement of 

traditional calibration methods, this method detects multiple chessboard corner points using 

libcbdetect algorithm and obtains pixel coordinates. Then, it uses a depth-first search 

algorithm to obtain the world coordinates of the chessboard corners and calculates the 

homography matrix based on the world-pixel coordinates pair through RANSAC algorithm. 

Finally, the undistorted image is transformed into a bird's eye view (BEV) using the obtained 

homography matrix. This method is simple and effective, and can improve the accuracy of 

lane keeping functions, which is of practical significance in autonomous driving applications. 

1. Introduction 

In autonomous driving technology, lane-keeping function is a crucial part. Lane-keeping function 

requires accurate detection of parameters such as lane curvature radius and lane spacing, and therefore, 

inverse perspective transformation (IPM) is needed to obtain a bird's-eye view of the lane lines from 

the camera's perspective [1]. Fisheye camera is often used as an important sensor for environment 

perception in autonomous driving, and calibrating the fisheye camera is necessary for IPM. This 

involves obtaining the intrinsic and extrinsic parameters of the camera. 

Traditional camera calibration methods often rely on chessboard patterns [2] for corner detection. 

However, popular calibration tools often have a complicated process. Mainstream calibration 

toolboxes require specifying the size of the chessboard in advance and only support single-frame 

detection of a single chessboard, making it necessary to capture multiple frames to achieve full 

coverage of the chessboard on the image. Therefore, proposing a convenient and robust fisheye 

camera calibration method is of great significance to the development of autonomous driving 

technology. Traditional calibration methods for cameras and depth sensors require the use of multiple 

sets of data for calibration, professional equipment, and a long time to complete, and are difficult to 

implement in practical applications. In contrast, this method only requires one image to calibrate the 

fisheye camera. 
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2. Basic Principle 

A fisheye camera calibration method based on multi-chessboard detection is proposed for the 

fisheye camera calibration process. Firstly, the camera's intrinsic parameters are calibrated according 

to the fisheye camera model, and distortion-corrected images are acquired. Then, multiple chessboard 

corner points are detected and pixel coordinates are obtained based on the libcbdetect algorithm. Next, 

the chessboard corner points' world coordinates are obtained based on the depth-first search algorithm. 

The homography matrix is calculated by the RANSAC algorithm based on the world-pixel coordinate 

pairs. Finally, the distortion-corrected image is transformed using the obtained homography matrix 

to produce a bird's-eye view (BEV) image. 

2.1. Fisheye model and Intrinsic calibration 

The calibration process of a fisheye camera is essentially finding the mapping relationship between 

3D points in the world coordinate system and pixel points in the pixel coordinate system during the 

imaging process. Calibration is generally divided into two steps: intrinsic calibration and extrinsic 

calibration. Intrinsic calibration is to find the relationship between 2D pixel points on the image and 

3D points in the camera coordinate system. Extrinsic calibration is to find the correspondence 

between 3D points in the camera coordinate system and 3D points in the world coordinate system, 

that is, to determine the pose of the camera in the world coordinate system. To perform intrinsic 

calibration, a fisheye camera model needs to be constructed, which establishes the relationship 

between 2D image coordinates and 3D vectors based on a non-linear imaging geometry model. 

Compared with pinhole cameras, the complex refraction relationships of fisheye cameras result in 

their projection model being divided into two main types: the Kannala-Brandt model [3] and the OCam 

model[4]. The former proposes a unit-sphere projection model, which divides the fisheye camera 

projection into two steps. The specific imaging process is shown in Figure 1. In Figure 1, θ is the 

angle between the incident light and the Zc axis, r is the distance from the image point to the distortion 

center, Oxyz is the pixel coordinate system, and OcXcYcZc is the camera coordinate system. In the 

first step, the point P from the 3D world coordinate system is projected onto a virtual unit sphere that 

coincides with the camera's own coordinate system and the sphere's center. In the second step, the 

point on the sphere is projected onto the pixel coordinate system to form the image point p, and this 

projection relationship is non-linear. 

 

Figure 1: Fisheye model. 
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Kannala classified the different projection relationships between the camera coordinate system and 

the pixel coordinate system of a fisheye camera into four types: equidistant projection model, 

equisolid angle projection model, orthographic projection model, and stereographic projection model. 

Due to the inability to accurately manufacture lenses according to a specific projection model in 

practical lens production, a generalized projection model was proposed based on the four projection 

models. The odd function of θ, r (θ), can be obtained from the first four projection models, and r(θ) 

obtained by Taylor expansion can be represented by odd-degree polynomials of θ. The projection 

function is represented as: 

𝑟(𝜃) = 𝑘1𝜃 + 𝑘2𝜃3 + 𝑘3𝜃5 + 𝑘4𝜃7 + 𝑘5𝜃9 + ⋯                         (1) 

In OpenCV, taking the first five terms is sufficient to meet the accuracy requirements, and the 

calibration process of the fisheye camera intrinsics is to solve the coefficients of the projection 

function's first five terms. 

 

Figure 2: a) Non-central camera model b) Central camera model 

MATLAB uses the OCam fisheye camera model, which represents the fisheye camera's 

perspective relationship as a combination of a perspective camera and a curved mirror, as shown in 

Figure 2. The mirror model is represented by a rough curve, and the imaging plane is represented by 

a rough straight line. Depending on whether the light emitted from the perspective camera extends to 

a point on the mirror, it is divided into non-central camera models and central camera models. Among 

them, the central camera model has the light rays intersecting at a single effective viewpoint. 

In the OCam model, the following assumptions are made: 1. the mirror camera model is central, 

2. the camera optical axis is well aligned with the mirror axis, 3. the mirror is symmetric along the 

mirror axis, and 4. lens distortion is integrated into the projection function. Based on these 

assumptions, a camera model is constructed. 

Let p be the image point, (u, v) be the pixel coordinates of p, and vector P be the vector from the 

single effective viewpoint to point p. It can be assumed that there is a relationship between vector P 

and pixel coordinates u, v as follows: 

𝑃 = [
𝑥
𝑦
𝑧

] =  [

𝑢
𝑣

𝑓(𝑢, 𝑣)
]                                                                 (2) 

From assumption 2, it can be deduced that x and y are proportional to u and v, respectively: 

[
𝑥
𝑦] =  [

𝛼 ∙ 𝑢
𝛼 ∙ 𝑣

] , 𝛼 > 0                                                                (3) 

From assumption 3, it can be deduced that the function f (u, v) depends only on the distance from 

the point to the image center. Let 𝜌 =  √𝑢2 + 𝑣2, and equation (2) can be simplified as: 
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 𝑃 = [
𝑥
𝑦
𝑧

] =  [

𝑢
𝑣

𝑓(𝜌)
]                                                                         (4) 

The function f (ρ) can be described using a polynomial: 

𝑓(𝜌) = 𝑎0 + 𝑎1𝜌 + 𝑎2𝜌2 + 𝑎3𝜌3 + 𝑎4𝜌4 + ⋯                                      (5) 

2.2. Multi-chessboard corner detection algorithm 

Two commonly used corner detection algorithms are the Harris corner algorithm [5] and the Shi-

Tomasi corner algorithm [6]. Geiger et al. [7] proposed a more robust corner detection method for 

dealing with image noise and improving localization accuracy. Based on the literature, a multi-

chessboard detection algorithm was implemented, which consists of three steps: 1) locating the 

chessboard corners, 2) sub-pixel level corner detection and refinement of direction, and 3) optimizing 

the energy function and growing the chessboard.  

Two corner prototypes with four filters each are shown in Figure 3 for corner detection methods 

of various significant distortion. 

 

 

Figure 3: Corner prototype 1 and Corner prototype 2. 

To convolve the image with the filter kernel, and calculate the similarity (corner likelihood) 

between each pixel and the corner. The calculation method is as follows: 

𝑐 = max(𝑆1
1, 𝑆2

1, 𝑆1
2, 𝑆2

2)                                                                (6) 

𝑆1
𝑖 = min(𝑚𝑖𝑛(𝑓𝐴

𝑖 , 𝑓𝐵
𝑖) − 𝜇, 𝜇 − 𝑚𝑖𝑛(𝑓𝐶

𝑖 , 𝑓𝐷
𝑖 ))                                        (7) 

𝑆2
𝑖 = min(𝜇 − 𝑚𝑖𝑛(𝑓𝐴

𝑖 , 𝑓𝐵
𝑖) , 𝑚𝑖𝑛(𝑓𝐶

𝑖 , 𝑓𝐷
𝑖 ) − 𝜇)                                          (8) 

𝜇 = 0.25(𝑓𝐴
𝑖 + 𝑓𝐵

𝑖 + 𝑓𝐶
𝑖 + 𝑓𝐷

𝑖 )                                                         (9) 

𝑓𝐴
𝑖 represents the convolution response of kernel A and prototype i (i=1,2) at a certain pixel. 𝑆1

𝑖  

and 𝑆2
𝑖  represent the possibility of different prototype flipping. 

For each pixel, the corner similarity is calculated to obtain a corner similarity map. Non-maximum 

suppression (NMS) [8] is used to obtain candidate points. Weighted directional histograms are 

calculated using Sobel filtering [9] for the candidate points, and mean shift algorithm [10] is used to 

calculate the two main modes 𝛼1 and 𝛼2. A template T is constructed based on edge directions and 

the expected gradient magnitude ‖𝛻𝐼‖2 . The product of 𝑇 ∗ ‖𝛻𝐼‖2  and the similarity score from 

Equation (6) is used as the corner score, and the final corner list is obtained by thresholding the score, 

where the “*” denotes a normalized cross-correlation operator. 

In subpixel-level corner localization, the following fact is utilized: at the ideal corner position 𝑐 ∈
ℝ2, the image gradient 𝑔𝑝 ∈ ℝ2 of its neighboring pixel 𝑝 ∈ ℝ2 should be approximately orthogonal 

to p-c, leading to the optimization problem: 
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𝐜 = arg 𝑚𝑖𝑛
𝐜′

 ∑  𝐩∈𝒩𝐈(𝐜′) (𝐠𝐩
𝑇(𝐩 − 𝐜′))

2
                                            (10) 

𝒩𝐈 is a local neighborhood of 11x11 pixels. Note that pixels are automatically weighted according 

to their gradient magnitudes. By taking the derivative of equation (10) with respect to c' and setting 

it to zero, we obtain: 

𝐜 = (∑  𝐩∈𝒩I
gpg𝐩

𝑇)
−1

∑  𝐩∈𝒩𝐈
(𝐠p𝐠𝐩

𝑇)𝐩                                             (11) 

Here, 𝑔𝐩
𝑖  represents the i-th element of 𝑔𝑝. 

The extracted corner points are grown into a checkerboard grid using an energy function that is 

minimized to recover the checkerboard structure. Here, the energy function for the checkerboard grid 

is defined as: 

𝐸(𝒳, 𝒴) = 𝐸
corners 

(𝒴) + 𝐸
struct 

(𝒳, 𝒴)                                               (12) 

The energy function for the chessboard is defined as follows, where 𝒳 = {𝐜1, … , 𝐜𝑁} is the set of 

candidate corners, and 𝒴 = {𝐲1, … , 𝐲𝑁} is the corresponding labels, where 𝐲 ∈ {𝒪} ∪ ℕ2 represents 

outliers (𝒪)  or rows and columns in the chessboard (ℕ2) . The first term 𝐸corners  represents the 

negative of the total number of corners in the current chessboard. The second term 𝐸struct  describes 

the matching degree of predicting the third corner using two adjacent corners. For every triplet of 

adjacent corners in each row and column of the chessboard, the structural energy is calculated. The 

maximum value of the structural energy of each triplet is taken as the structural energy of the 

chessboard. It should be noted that since the structural energy constraint uses local linear constraints, 

the above chessboard growing method is also suitable for high-distortion images captured by fisheye 

lenses. 

3. Calibration experiment 

To facilitate the calibration process for different vehicle models and ensure comprehensive 

coverage of the camera image, calibration stickers with chessboard patterns were designed as shown 

in the figure 4. 

 

Figure 4: Checkerboard sticker. 

The experimental vehicle was equipped with a fisheye camera. First, the camera was calibrated 

for intrinsic parameters based on the Kannala-Brandt model, and the undistorted images were 

obtained. Corner detection was performed on the undistorted images, and the detected corners are 

shown in the figure 5. 
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Figure 5: Corner detection. 

 

Figure 6: Checkerboard growth. 

The detected corner points were used to fit the checkerboard grid, and the fitting result is shown 

in Figure 6. The coordinates of the grid's internal corners in the pixel coordinate system were 

generated, and a depth-first search algorithm [11] was used to traverse the grid's corner points to 

obtain their world coordinates. Using the obtained coordinate pairs, the RANSAC algorithm [12] was 

applied to calculate the perspective transformation matrix between the front view and BEV (bird's 

eye view) images. The front view image was then transformed into the BEV using the inverse 

perspective transformation. 

4. IPM Result 

The bird's-eye view image obtained through the internal and external parameter transformation 

after calibration using this method is shown in Figure 7. 

 

Figure 7: Bev image based on external parameter calibration. 

5. Conclusion 

This method is based on the adaptive recognition of multiple chessboard schemes, which does not 

require prior data and can complete camera extrinsic calibration with only one image, greatly 

improving the calibration efficiency. Figure 8 shows the comparison between this method and the 

OpenCV method [13] under different lighting conditions and scenes. It can be seen that the corner 

detection effect of this calibration method is more robust under complex lighting conditions. 
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a) OpenCV Corner prototype in scenarios 1 

 
b) Our method in scenarios 1 

 
c) OpenCV corner prototype in scenarios 2 

 
d) Our method in scenarios 2 

Figure 8: Our method is compared with OpenCV corner detection in two scenarios  
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