
A Public Key Searchable Encryption Method Based on

Multiple Keywords

Wenrui Ji1, Yan Wang1, Xin Luo1, Li Li2,*, Guangwei Xu1, Wei Li1

1School of Computer Science and Technology, Donghua University, Shanghai, 201620, China
2School of Architecture and Urban Planning, Tongji University, Shanghai, 200082, China

*Corresponding author

Keywords: Searchable encryption, multi-keyword, random element padding

Abstract: In recent years, the secure search of encrypted cloud data has become a hot

research topic and a challenging task. Several secure search schemes have been proposed to

address this challenge. However, existing public-key searchable encryption schemes still

face many problems. Among these schemes, most of them are based on single-key searchable

encryption schemes, and although some schemes are designed for multi-key search, they still

disclose the secret information of the encrypted index. Based on this, this paper proposes a

multi-key public-key searchable encryption scheme without a secure channel, which uses a

random element padding method to construct an encrypted index to ensure the security of

the index information, and then improves the efficiency of the search by aggregating the

query keyword information to generate query trapdoors. The simulation results of the

algorithm show that the algorithm improves the query efficiency and query accuracy under

the condition that the index and trapdoor are secure.

1. Introduction

With the development of cloud computing technology0 , more and more individuals and businesses

are choosing to store their data on cloud servers for management purposes. As cloud servers are not

fully trusted and users' data stored in the cloud may be attacked or at risk of privacy breaches, users

encrypt their data before uploading it. While this method protects users' data, when users want to find

it, they need to download the encrypted data locally from the cloud, decrypt it and then search for it,

which consumes a lot of network bandwidth and is inefficient.

In order to improve the efficiency of ciphertext retrieval, many scholars have conducted extensive

research on searchable encryption technique0000. Song et al.0 proposed the first SE scheme, which

requires only a small amount of communication, but the computational overhead is linear in the size

of the search query. To solve this problem, Boneh et al.00 proposed PEKS (Public key Encryption

with Keyword Search), where the data owner encrypts the data with the public key and uploads it to

the cloud server, and the data user searches the data with his private key and the query keyword to

generate the corresponding trapdoor and then uploads it to the cloud server for keyword search, and

the cloud server By matching the cipher text with the trapdoor, the cloud server returns the data

needed by the user. However, Boneh et al.00 's public key searchable encryption scheme has the

disadvantage that a secure channel needs to be established between the user and the cloud server to

Journal of Electronics and Information Science (2023)
Clausius Scientific Press, Canada

DOI: 10.23977/jeis.2023.080101
ISSN 2371-9524 Vol. 8 Num. 1

1

transmit the query trapdoor, and the overhead of establishing a secure channel is often expensive. To

address this drawback, Beak et al.0 proposed a public key searchable encryption scheme without a

secure channel. In 2007, Gu et al.0 proposed a more efficient public-key searchable encryption

scheme based on bilinear pairs. In their scheme, the encryption process has no bilinear pair

computation operation, making the efficiency of the scheme improved compared to other schemes.

In Beak et al.0 the model of the scheme suffers from the drawback that the attacker does not have

access to the test queries, so Rhee et al.00 enhanced the Beak et al.0 The security model in the

proposed scheme enables an attacker to obtain a relationship between a ciphertext and a trapdoor

beyond the challenge ciphertext. A public key searchable encryption scheme without a secure channel

under the enhanced model is also proposed. However Beak et al.0 proposed a scheme that uses a

random prediction machine in the security proof process, such that the scheme implementation may

lead to insecurity under the standard model, based on this Fang et al.0 proposed a public-key

searchable encryption scheme that is resistant to keyword guessing attacks. Although the appealing

scheme improves the security of public-key searchable encryption schemes under unsecured channels,

the schemes are designed to perform only single-keyword searches, and data users who want to query

encrypted data corresponding to multiple keywords need to generate many query traps, and the results

obtained are likely to be imprecise due to the inclusion of only a single keyword.

To solve this problem, this paper proposes a multi-keyword-based public key searchable

encryption method, with specific contributions summarized below.

(1) The method uses a random element padding method to ensure that the ciphertext size of all

encrypted indexes is the same, thus protecting the keyword ciphertext information while preventing

the leakage of the number of keywords corresponding to the encrypted data.

(2) The method designs an aggregated keyword information trapdoor generation method to prevent

the leakage of query keyword information in the query trapdoor, while only one query trapdoor needs

to be generated regardless of how many keywords the data user wants to query each time, reducing

the computational overhead of user-generated query trapdoors and improving the efficiency of query

matching on the cloud server.

(3) The security of the encrypted index and query trapdoor in the method is demonstrated by

security analysis.

2. System model and programme brief

2.1 System model

Figure 1. System model

2

Searchable cryptography provides ciphertext retrieval as well as ciphertext data security. A typical

public key searchable encryption system model consists of three parties, namely Data Owner (DO),

Cloud Server (CS), and Data User (DU), as shown in 0. First, the Data Owner extracts the keyword

set from the shared file and creates an encrypted query index and uploads the generated encrypted

index and encrypted file to the Cloud Server. Next, the data user generates the corresponding trapdoor

based on the keywords to be retrieved and submits the trapdoor to the cloud server. Finally, the cloud

server uses the query-matching algorithm of the query trapdoor and the encrypted index to pass all

the encrypted data matching the keywords to the user, and then the user can decrypt the data locally

to obtain the required data.

2.2 Formal definition of the programme

The method in this paper consists of five polynomial algorithms: initialization, key generation,

multi-keyword index construction, multi-keyword trapdoor generation, and multi-keyword query

matching, as defined below.

𝑆𝑒𝑡𝑢𝑝(1𝜆) → (𝑝𝑎𝑟𝑎𝑚). Input safety parameter, output public parameter 𝑟𝑎𝑚 .

𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚) → ({𝑝𝑘𝑠, 𝑠𝑘𝑠}, {𝑝𝑘𝑢, 𝑠𝑘𝑢}). Enter the public parameter 𝑝𝑎𝑟𝑎𝑚 to generate the

cloud server key, respectively {𝑝𝑘𝑠, 𝑠𝑘𝑠} and the data user's key {𝑝𝑘𝑢, 𝑠𝑘𝑢}.
𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝑝𝑎𝑟𝑎𝑚, 𝑝𝑘𝑠, 𝑝𝑘𝑢,𝑊) → 𝐼. The data owner extracts a collection of keywords 𝑊, uses

the cloud server’s public key 𝑝𝑘𝑠 and the user's public key 𝑝𝑘𝑢 to create the encrypted index 𝐼.
𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑝𝑎𝑟𝑎𝑚, 𝑝𝑘𝑢, 𝑠𝑘𝑢, 𝑄) → 𝑇𝑟𝑄. The data user uses the set of query keywords 𝑄 and his

own key to generate a query trapdoor 𝑇𝑟𝑄.

𝑇𝑒𝑠𝑡(𝑝𝑎𝑟𝑎𝑚, 𝑝𝑘𝑢, 𝑠𝑘𝑠, 𝑇𝑟𝑄, 𝐼) → 𝑡𝑟𝑢𝑒\𝑓𝑎𝑙𝑠𝑒. The cloud server uses the query trapdoor 𝑇𝑟𝑄 and

the encrypted index 𝐼 to perform a bilinear pair operation, and if the result matches, output 𝑡𝑟𝑢𝑒,

otherwise output 𝑓𝑎𝑙𝑠𝑒.

3. Related concepts

3.1 Bilinear mapping

Set 𝐺1, 𝐺2 are the cyclic group and 𝐺𝑇 is the multiplicative cyclic group and all the order of the

group is prime 𝑞. 𝑍𝑞 is a finite field of order 𝑞 of a finite field. Bilinear mappings 𝑒：𝐺1 × 𝐺2 →

𝐺𝑇 has the following properties.

Bilinear. For any 𝑢 ∈ 𝐺1, the 𝑣 ∈ 𝐺2, the 𝑎, 𝑏 ∈ 𝑍𝑞. When 𝐺1 and 𝐺2 are multiplicative cyclic

groups, the𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒(𝑢, 𝑣)𝑎𝑏 ; when𝐺1 and𝐺2 are additive cyclic groups, the 𝑒(𝑎𝑢, 𝑏𝑣) =
𝑒(𝑢, 𝑣)𝑎𝑏.

Non-degenerative. 𝑒(𝑔1, 𝑔2) ≠ 1 , where 𝑔1 is the generating element of the 𝐺1 , 𝑔2 is the

generating element of the 𝐺2.

Computability. For any 𝑢 ∈ 𝐺1, the 𝑣 ∈ 𝐺2, all can be efficiently calculated 𝑒(𝑢, 𝑣).

4. Programme description

4.1 Initialization

𝑆𝑒𝑡𝑢𝑝(1𝜆) → (𝑝𝑎𝑟𝑎𝑚). Input safety parameter 𝜆, given the parameters of the bilinear pair 𝛾 =
(𝑝, 𝐺1, 𝐺2, 𝑒, 𝑔), where 𝐺1, 𝐺2 are the multiplicative cyclic group, and 𝑔 is the generating element

of the group𝐺1, the bilinear map is 𝑒: 𝐺1 × 𝐺1 → 𝐺2. The two hash functions are 𝐻1: 𝐺2 → 𝑍𝑝
∗ , and

3

𝐻2: {0,1}
∗ → 𝑍𝑝

∗ . The output common parameters are

𝑝𝑎𝑟𝑎𝑚 = (𝑝, 𝐺1, 𝐺2, 𝑒, 𝑔, 𝐻1, 𝐻2, 𝑍𝑝
∗).

4.2 Key generation

𝐾𝑒𝑦𝐺𝑒𝑛(𝑝𝑎𝑟𝑎𝑚) → ({𝑝𝑘𝑠, 𝑠𝑘𝑠}, {𝑝𝑘𝑢, 𝑠𝑘𝑢}). It is executed for the system participants and is

divided into two parts, i.e. key generation for the cloud server and key generation for the data user.

The exact process is as follows.

(1) Cloud server key generation

𝐾𝑒𝑦𝐺𝑒𝑛𝑆𝑒𝑟𝑣𝑒𝑟(𝑝𝑎𝑟𝑎𝑚) → (𝑝𝑘𝑠, 𝑠𝑘𝑠) . The cloud server picks a random value 𝑥 ∈ 𝑍𝑝
∗ to

calculate the first part of the public key 𝑝𝑘𝑠,1 = 𝑔
𝑥, selects a random value 𝜉 ∈ 𝐺1

∗ as the second

part of the public key 𝑝𝑘𝑠,2 = 𝜉, the cloud server makes the public key 𝑝𝑘𝑠 = {𝑝𝑘𝑠,1, 𝑝𝑘𝑠,2} and

keeps its own private key 𝑠𝑘𝑠 = 𝑥.

(2) Data user key generation

𝐾𝑒𝑦𝐺𝑒𝑛𝑢𝑠𝑒𝑟(𝑝𝑎𝑟𝑎𝑚) → (𝑝𝑘𝑢, 𝑠𝑘𝑢). The data user picks a random number 𝑦 ∈ 𝑍𝑝
∗ , calculates the

first part of the public key 𝑝𝑘𝑢,1 = 𝑔
𝑦, selects a random value 𝜃 ∈ 𝐺1

∗ as the second part of the

public key 𝑝𝑘𝑢,2 = 𝜃, the data user discloses the public key 𝑝𝑘𝑢 = {𝑝𝑘𝑢,1, 𝑝𝑘𝑢,2} and retains their

private key 𝑠𝑘𝑢 = 𝑦. This key pair is {𝑝𝑘𝑢, 𝑠𝑘𝑢} which is used to generate the query trapdoor.

4.3 Multi-keyword index construction

𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝑝𝑎𝑟𝑎𝑚, 𝑝𝑘𝑠, 𝑝𝑘𝑢,𝑊) → 𝐼. First, the data owner extracts a collection of keywords

𝑊 = {𝑤1, … , 𝑤𝑛} based on the shared file, then the data owner selects a random value 𝑠, 𝑟 ∈ 𝑍𝑝
∗ ,

computes 𝐼1 = 𝑔
𝑠. Then the data owner selects a random value and uses the public key of the cloud

server to calculate the secret value 𝑡,

𝑡 = 𝐻(𝑒(𝑝𝑘𝑠,1, 𝑝𝑘𝑠,2)
𝑠), (1)

Then the data owner calculates

𝐼2 = {𝑅1, (𝑝𝑘𝑢,1 ∙ 𝑔
−𝐻2(𝑤2))

𝑟

𝑡 , … , (𝑝𝑘𝑢,1 ∙ 𝑔
−𝐻2(𝑤𝑖))

𝑟

𝑡 , 𝑅𝑖+1, … , 𝑅𝑛} (𝑖 ∈ [1, 𝑛]) , Where 𝑅 is a

random element. If the keyword at the corresponding position of the current keyword set is not

included in the file, select a random element to fill. And 𝐼3 = 𝑒(𝑔, 𝑔)
𝑟, 𝐼4 = 𝑒(𝑔, 𝑝𝑘𝑢,2)

𝑟.

The final computed encryption index is 𝐼 = {𝐼1, 𝐼2, 𝐼3, 𝐼4}

{

𝐼1 = 𝑔

𝑠 ;

𝐼2 = {𝑅1, (𝑝𝑘𝑢,1 ∙ 𝑔
−𝐻2(𝑤2))

𝑟

𝑡 , … , (𝑝𝑘𝑢,1 ∙ 𝑔
−𝐻2(𝑤𝑖))

𝑟

𝑡 , 𝑅𝑖+1, … , 𝑅𝑛}(𝑖 ∈ [1, 𝑛]) ;

𝐼3 = 𝑒(𝑔, 𝑔)
𝑟;

𝐼4 = 𝑒(𝑔, 𝑝𝑘𝑢,2)
𝑟。

 (2)

Encrypted indexes created by the data owner are uploaded to the cloud server.

4.4 Multi-keyword trapdoor generation

𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟(𝑝𝑎𝑟𝑎𝑚, 𝑝𝑘𝑢, 𝑠𝑘𝑢, 𝑄) → 𝑇𝑟𝑄 . The data user randomly selects 𝑠𝑄 ∈ 𝑍𝑝
∗ as 𝑇𝑟1 = 𝑠𝑄

and then calculates the aggregated keyword information based on the keywords they want to query

𝐾𝑊 = ∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1 and then calculates 𝑇𝑟2 = (𝑝𝑘𝑢,1 ∙ 𝑔

−𝑠𝑄)
1

𝑠𝑘𝑠−𝐾𝑊, and finally the query keyword

is given in the keyword set 𝑊 the location information in the set of 𝑇𝑟3 = {𝑎1, … , 𝑎|𝑄|} generates

4

a trapdoor 𝑇𝑟𝑄 = {𝑇𝑟1, 𝑇𝑟2, 𝑇𝑟3}.

{

𝑇𝑟1 = 𝑠𝑄;

𝑇𝑟2 = (𝑝𝑘𝑢,2 ∙ 𝑔
−𝑠𝑄)

1

|𝑄|∙𝑠𝑘𝑢−𝐾𝑊;

𝑇𝑟3 = {𝑎1, … , 𝑎|𝑄|}。

 (3)

4.5 Multi-keyword query matching

𝑇𝑒𝑠𝑡(𝑝𝑎𝑟𝑎𝑚, 𝑝𝑘𝑢, 𝑠𝑘𝑠, 𝑇𝑟𝑄, 𝐼) → 𝑡𝑟𝑢𝑒\𝑓𝑎𝑙𝑠𝑒. The cloud server first calculates the secret value 𝑡

for

𝑡 = 𝐻1(𝑒(𝐼1, 𝑝𝑘𝑠,2)
𝑠𝑘𝑠) = 𝐻1(𝑒(𝑔1

𝑠, 𝜉)𝑥), (4)

Then according to 𝑇𝑟3 = {𝑎1, … , 𝑎|𝑄|}. The aggregated keyword information is then calculated

based on the position given in 𝐼𝑊 for

𝐼𝑊 = ∏ (𝑝𝑘𝑢,1 ∙ 𝑔
−𝐻2(𝑤𝑖))

𝑟

𝑡|𝑄|
𝑖=1 , (5)

Final verification of the equation

𝑒(𝐼𝑊𝑡, 𝑇𝑟2) ∙ 𝐼3
𝑠𝑄 = 𝐼4. (6)

The server verifies that equation (6) holds. If the above formula holds, then return 𝑡𝑟𝑢𝑒, otherwise

return 𝑓𝑎𝑙𝑠𝑒. Only if the secret values 𝑡 calculated by formula (1) and formula (4) are equal, and

when the encrypted index is the same as all the keywords contained in the query trapdoor, the correct

result is obtained.

5. Programme analysis

To ensure the security of the algorithm in this paper, this section first analyses the correctness of

equation (6), and then analyses the security of the scheme.

5.1 Correctness analysis

The correctness of equation (6) is analysed as follows.

𝑙𝑒𝑓𝑡 = 𝑒(𝐼𝑊𝑡, 𝑇𝑟2) ∙ 𝐼3
𝑠𝑄

= 𝑒 (∏ (𝑝𝑘𝑢,1 ∙ 𝑔
−𝐻2(𝑤𝑖))

𝑟

𝑡
∙𝑡|𝑄|

𝑖=1 , (𝑝𝑘𝑢,2 ∙ 𝑔
−𝑠𝑄)

1

|𝑄|∙𝑠𝑘𝑢−𝐾𝑊) ∙ 𝑒(𝑔, 𝑔)𝑠𝑄𝑟

= 𝑒 (𝑔|𝑄|𝑦 ∙ 𝑔−∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1 , (𝜉 ∙ 𝑔−𝑠𝑄)

1

|𝑄|∙𝑦−∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1)

𝑟

∙ 𝑒(𝑔, 𝑔)𝑠𝑄𝑟

= 𝑒 (𝑔|𝑄|𝑦−∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1 , (𝜉 ∙ 𝑔−𝑠𝑄)

1

|𝑄|∙𝑦−∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1)

𝑟

∙ 𝑒(𝑔, 𝑔)𝑠𝑄𝑟

= 𝑒 (𝑔|𝑄|𝑦−∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1 , 𝑔

1

|𝑄|∙𝑦−∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1)

−𝑠𝑄𝑟

∙ 𝑒 (𝑔|𝑄|𝑦−∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1 , 𝜉

1

|𝑄|∙𝑦−∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1)

𝑟

∙ 𝑒(𝑔, 𝑔)𝑠𝑄𝑟

= 𝑒(𝑔, 𝜉)𝑟 = 𝑟𝑖𝑔ℎ𝑡.

5

5.2 Safety analysis

The approach in this paper focuses on two aspects of security, the security of encrypted indexes

and the security of query trapdoors.

(1) Security of encrypted indexes: Firstly, the same keywords in different encrypted indexes have

completely different ciphertexts. Assume that given two encrypted indexes 𝐼1 and 𝐼2, assume that

𝐼1 = 𝐼2, then there exists 𝐼1,1 = 𝐼2,1, and 𝐼1,2 = 𝐼2,2, and 𝐼1,3 = 𝐼2,3, and 𝐼1,4 = 𝐼2,4, and since all

parts of the encrypted index are blinded using random elements, the probability of two encrypted

indexes being identical is much less than
1

𝑝
, and in addition, the

𝐼1,2 = {𝑅1,1, (𝑝𝑘𝑢,1 ∙ 𝑔
−𝐻2(𝑤2))

𝑟1
𝑡1 , … , (𝑝𝑘𝑢,1 ∙ 𝑔

−𝐻2(𝑤𝑖))
𝑟1
𝑡1 , 𝑅1,𝑖+1, … , 𝑅1,𝑛}(𝑖 ∈ [1, 𝑛]), and

𝐼2,2 = {𝑅2,1, (𝑝𝑘𝑢,1 ∙ 𝑔
−𝐻2(𝑤2))

𝑟2
𝑡2 , … , (𝑝𝑘𝑢,1 ∙ 𝑔

−𝐻2(𝑤𝑖))
𝑟2
𝑡2 , 𝑅2,𝑖+1, … , 𝑅2,𝑛}(𝑖 ∈ [1, 𝑛]).

As a result of being different random elements 𝑟, the 𝑡 blinds to the keyword information, the

cloud server cannot compute the keyword information according to the discrete logarithmic difficulty

assumption and therefore does not disclose any keyword information. Furthermore, it can be noted

that the second part of each encrypted index is a collection of encrypted keywords, and the rest of the

positions are filled with random elements except for the corresponding keywords, which nicely hides

the number of keywords contained in each encrypted index.

(2) Security of query trapdoors, given a query trapdoor 𝑇𝑟𝑄 that, since the trapdoor uses the

authorized user's key 𝑠𝑘𝑢 and the trapdoor contains the aggregated information of all the keywords

that the authorized user wants to query ∑ 𝐻2(𝑤𝑖)
|𝑄|
𝑖=1 . Therefore, the server cannot decrypt the

plaintext keyword information, satisfying the discrete logarithmic difficulty assumption. In addition,

the trapdoor satisfies the unlinkability between trapdoors, assuming that the query keyword set 𝑄 =
{𝑤1, … , 𝑤|𝑄|} query trapdoor is generated, the data user runs the 𝑇𝑟𝑎𝑝𝑑𝑜𝑜𝑟 algorithm to generate

𝑇𝑟𝑄
1 = {𝑇𝑟1,𝑄

1 = 𝑠𝑄 , 𝑇𝑟2,𝑄
1 = (𝑝𝑘𝑢,2 ∙ 𝑔

−𝑠𝑄)
1

|𝑄|∙𝑠𝑘𝑢−𝐾𝑊, 𝑇𝑟3,𝑄
1 = {𝑎1, … , 𝑎|𝑄|}} , and 𝑇𝑟𝑄

2 = {𝑇𝑟1,𝑄
2 =

𝑠𝑄
′ , 𝑇𝑟2,𝑄

2 = (𝑝𝑘𝑢,2 ∙ 𝑔
−𝑠𝑄

′
)

1

|𝑄|∙𝑠𝑘𝑢−𝐾𝑊 , 𝑇𝑟3,𝑄
2 = {𝑎1

′ , … , 𝑎|𝑄|
′ }}. Assuming 𝑇𝑟𝑄

1 = 𝑇𝑟𝑄
2, then there must

exist 𝑇𝑟1,𝑄
1 = 𝑇𝑟1,𝑄

2 that 𝑇𝑟2,𝑄
1 = 𝑇𝑟2,𝑄

2 , and 𝑇𝑟3,𝑄
1 = 𝑇𝑟3,𝑄

2 , i.e. 𝑠𝑄 = 𝑠𝑄
′ , however 𝑠𝑄 = 𝑠𝑄

′ the

probability that is less than or equal to
1

𝑝
 , is negligible, so it is not possible to distinguish whether

two query traps contain the same keyword, i.e. the query traps corresponding to the same keyword

have unlinkability.

6. Analysis of experimental results

Experiments were conducted using the JPBC library on two windows 11 systems with 1.80Ghz

AMD Ryzen 74800U and 16GB RAM, one simulating a data owner and one simulating a data user,

in addition to a cloud server with a dual-core CPU and 8GB RAM selected from the Aliyun ECS for

storing the encrypted index and for query matching. In this paper, Type A symmetric bilinear pairing

is chosen to complete the specific algorithm. The dataset is selected from the real dataset provided by

Google.

(1) The computational overhead of creating an encrypted index. The calculation cost required by

the data owner to create an encrypted index is shown in 0. As the number of keywords increases, the

calculation cost of index construction increases slowly. This is because the second part of the

encrypted index needs to be encrypted according to the size of the keyword set, thus causing a part

of the computational overhead, and secondly, the computational overhead of the index is also mainly

affected by the change of the number of files, the more The higher the number of files, the higher the

6

number of encrypted indexes.

Figure 2. Index construction calculation cost

(2) Computational overhead for trapdoor generation. 0 shows the computational overhead for

generating query traps when a data user wants to query. This is because when a data user wants to

query, he only needs to calculate the aggregated query information and generate a valid query trap

door based on all the keywords he wants to query, instead of generating the corresponding query trap

door for all the keywords separately, which greatly reduces the computation overhead of generating

the query trap door for the data user. This greatly reduces the computational overhead of query

trapdoor generation by data users.

Figure 3. Trapdoor generation calculation cost

(3) Computational overhead for query matching. 0 shows the computational overhead of the cloud

server when performing query matching. As can be seen from the dashed line in the figure, the query

matching overhead increases approximately linearly as the number of keywords increases and as the

number of indexes included increases.

Figure 4. Query matching calculation cost

7

7. Conclusion

This paper provides a multi-key public key searchable encryption method that can protect the

number of keywords in encrypted data, with certain application value, in response to the problem that

most traditional public key searchable schemes with keywords without secure channel only have

single keyword search.

Acknowledgments

This work was supported by Shanghai Natural Science Foundation (19ZR1402000 and

21ZR1400400), National Natural Science Foundation of China (62172088 and 61772018).

References

[1] Ali M, Khan S U, Vasilakos A V. Security in cloud computing: opportunities and challenges [J]. Information sciences,

2015, 305: 357-383.

[2] D. X. Song, D. Wagner, A. Perrig. Practical Techniques for Searches on Encrypted Data [C]// IEEE Symposium on

Security & Privacy. IEEE, 2002.

[3] Dan B, Crescenzo G D, Ostrovsky R, et al. Public Key Encryption with Keyword Search [J]. EUROCRYPT 2004,

2004.

[4] J. Baek, R. Safavi-Naini and W. Susilo. Public Key Encryption with Keyword Search Revisited[C]. In Proc. of Applied

Cryptography and Information Security 06 (ACIS 2006), LNCS 5072, Springer-Verlag, 2008:1249-1259.

[5] C. Gu, Y Zhu, and H. Pan. Efficient Public Key Encryption with Keyword Search Schemes from Pairings[C]. In Proc.

of Information Security and Cryptology: Third SKLOIS Conference, Inscrypt 2007, LNCS 4990, Springer-Verlag,

2007:372-383.

[6] H. S. Rhee, J. H. Park, W. Susilo, and D. H. Lee. Improved searchable public key encryption with designated tester.

Proc. of the 4th international Symposium on information, Computer, and Communications Security, ASIACCS 2009, ACM,

New York, NY, 2009:376-379.

[7] Fang L, Susilo W, Ge C, et al. Public key encryption with keyword search secure against keyword guessing attacks

without random oracle [J]. Information Sciences, 2013, 238: 221-241.

[8] Z. Fu, K. Ren, J. Shu, X. Sun, F. Huang, Enabling personalized search over encrypted outsourced data with efficiency

improvement, IEEE Trans. Parallel Distrib. Syst. 27 (9) (2016) 2546-2559.

[9] Huang Qiong, Li Hong-bo. An efficient public-key searchable encryption scheme secure against inside keyword

guessing attacks [J]. Information Sciences, 2017, s 403-404:1-14.

[10] Curtmola R, Garay J, Kamara S, et al. Searchable symmetric encryption: improved definitions and efficient

constructions[C]//Proceedings of the 13th ACM conference on Computer and communications security. 2006: 79-88.

[11] Yin H, Li Y, Deng H, et al. An Attribute-Based Keyword Search Scheme for Multiple Data Owners in Cloud-Assisted

Industrial Internet of Things [J]. IEEE Transactions on Industrial Informatics, 2022.

8

