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Abstract: With the increasing number of Web services with similar functions on the Internet, 

traditional collaborative filtering service recommendation methods may encounter problems 

such as data sparseness, cold start, and poor scalability. To solve the above problems, this 

project proposes a new Web service recommendation method based on the decomposition 

machine model. The method decomposes the user trust relationship matrix and the product 

rating matrix while adding the geographic location information of the service, and transforms 

the correlation matrix of the calculated user feature vector and item feature vector into the 

same latent factor space by means of a decomposition machine. Optimize training model 

parameters to provide users with accurate prediction scores. The ultimate purpose of QoS 

prediction is to recommend high-quality services to users, improve the efficiency of users' 

discovery and selection of high-quality services, and ultimately promote the utilization of 

network Web services and promote service providers to release higher-quality services. 

Scientific significance, but also has better application value. 

1. Introduction  

With the development of the Web2.0 model and related technologies, the Web has gradually 

become a platform for users to publish, share and consume various services. The explosive growth of 

Web services brings both opportunities and serious challenges. On the one hand, the network provides 

users with a large number of shared services, making it more and more convenient for users to obtain 

services and develop applications. On the other hand, in the face of so many unknown web services, 

it takes a lot of time and energy for service users to select the required services in a short time. It is 

extremely important and challenging to recommend high-quality services to user question.  

Some scholars have carried out certain research on the above-mentioned problems, and proposed 

many personalized, collaborative filtering Web service QoS prediction and service recommendation 

methods. However, traditional collaborative filtering prediction methods may suffer from data 

sparseness, cold start, and poor scalability. Although some studies have combined fusion clustering, 

smoothing technology, data dimensionality reduction, user-item similarity scoring and other 

technologies in the collaborative filtering recommendation algorithm, to a certain extent, the problem 

of data sparseness has been effectively improved, and the recommendation accuracy has been 

improved. At the same time, improved K-Means clustering, matrix factorization, implicit feedback 

and other methods are also widely used in predictive user rating analysis. However, these studies 
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involve the assumption that users are independent of each other, that is, all users have the same impact 

on other users' rating behavior, which obviously does not conform to the characteristics of people's 

daily behavior. There must be differences in the behavior of users in different regions to score the 

same item, that is, users in different regions and countries should show different interests and hobbies, 

so there will be regional differences in scoring the same item. 

Aiming at the above problems, this project proposes a Web service recommendation method that 

integrates implicit feedback information and decomposition machine model. The method 

comprehensively considers the explicit feedback information and implicit feedback information, and 

adds the user geographic location information while decomposing the user trust relationship matrix 

and the product rating matrix. The correlation matrix is transformed into the same latent factor space 

to provide users with accurate prediction scores by optimizing the parameters of the training model. 

The ultimate purpose of QoS prediction is to recommend high-quality services to users, improve the 

efficiency of users' discovery and selection of high-quality services, and ultimately promote the 

utilization of network Web services and promote service providers to release higher-quality services. 

Scientific significance, but also has better application value. 

Table 1: User-service matrix (response time) 

Numble Services 1 Services 2 Services 3 

User 1 456 456 123 

User 2 789 213 644 

User 3 213 654 649 

2. Research Status 

Ran [1] first proposed to integrate QoS into Web service discovery. QoS-based Web service 

discovery has recently become a research hotspot. Web service recommendation is based on Web 

service discovery, by using the user's basic information, historical experience or other implicit 

information to predict user needs and then make recommendations [2]. In the direction of Web service 

recommendation, it is necessary to consider the functional and non-functional attributes of the service. 

The most discussed is the quality of service (ie QoS), which includes response time, price, reliability, 

availability and other indicators [3]. The most direct way to calculate the QoS value is to calculate 

the average value of the QoS observed by the user on different services, or the average value of the 

QoS obtained by the service being invoked by different users. The advantage of these two methods 

is that the method is simple and the amount of calculation is small. The disadvantage is that the 

individual factors of the user are ignored, which will greatly affect the accuracy of the prediction. Fig 

1: Example of the impact of location on Web service QoS prediction 

 

Figure 1: Example of the impact of location on Web service QoS prediction 

Considering that the QoS value of Web services is related to specific users, in recent years, many 

works use collaborative filtering recommendation technology to carry out personalized QoS 

prediction and service recommendation, and have achieved certain results. However, the traditional 

collaborative filtering technology is greatly affected by data sparsity in application, and has problems 

such as cold-start users and poor scalability. Recently, model-based collaborative filtering techniques 

such as matrix factorization and factorization machines have attracted increasing attention in the field 
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of recommender systems [4, 5, 6]. The advantages of this type of method are that it can better 

overcome the data sparsity and cold-start user problems, and has high computational performance. 

Therefore, some recent works have introduced matrix factorization into recommendation for web 

services [7, 8]. However, the previous work has not fully understood and utilized the QoS 

characteristics of Web services, so the performance preference in QoS prediction is further improved. 

3. Traditional collaborative fitering algorithm based on QoS prediction 

3.1 Memory-based collaborative filtering 

Memory-Based Collaborative Filtering Algorithm: Find a set of similar neighbors through 

similarity calculation, and then predict the missing value based on the information of the set of similar 

neighbors. Typical memory-based collaborative filtering algorithms mainly include: user-based and 

item-based collaborative filtering algorithms.  

3.1.1 User-based collaborative filtering 

The user-based collaborative filtering algorithm [9] calculates the similarity between the active 

user and all other users, obtains the neighbor set similar to the current active user's hobbies, and then 

predicts and recommends it based on the information of the similar user set. In the user-based 

collaborative filtering algorithm recommendation process, the most critical step is to calculate the 

similarity between different users and find a set of similar neighbors for active users. The calculation 

of similarity between different users mainly includes cosine similarity, Pearson correlation coefficient 

and modified cosine similarity.  

3.1.2 Item-based collaborative filtering algorithm 

Item-based collaborative filtering algorithm [10] is currently the most widely used algorithm in 

the field of e-commerce. User-based collaborative filtering algorithm has been applied to a certain 

extent, but this algorithm has a big flaw. When the number of users increases, it becomes more and 

more difficult to calculate the similarity between different users, and its time complexity and space 

complexity increase in a quadratic order. In addition, if a user has not rated the item, the user-based 

collaborative filtering algorithm cannot find a set of similar users and cannot make recommendations. 

Based on these shortcomings, Amazon proposed an item-based collaborative filtering algorithm. The 

item-based collaborative filtering algorithm is also divided into three steps: calculate the similarity 

between different items, make predictions for active users based on the similarity set information of 

the target items, and finally determine the recommendation list to recommend to the user. 

3.2 Model-based collaborative filtering algorithm 

The model-based collaborative filtering algorithm obtains a model by training and learning the 

user-item score matrix, and then predicts the missing value. The model-based collaborative filtering 

algorithm uses mathematical calculations, machine learning, and data mining methods to mine the 

potential relationship between users and items, build a predictive model based on the user’s historical 

rating data, and then predict missing values, and finally recommend. 

Model-based collaborative filtering algorithms mainly include matrix factorization, cluster 

analysis, factorization machines, Bayesian networks, etc. These models are applied in different 

application scenarios. The algorithm generally completes the construction of the model through 

offline calculation, and when the model construction is completed, it can quickly complete the 

recommendation for the user. However, when a new user or item is added to the recommendation 
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system, the user-item matrix needs to be retrained and learned. Therefore, the model-based 

collaborative filtering algorithm is not suitable for online real-time recommendation. In addition, the 

model-based collaborative filtering algorithm has poor interpretability. It recommends based on the 

hidden correlation characteristics of users and items, and it is diff 

4. Improved Factorization Machine Model 

4.1 Construction of QoS Matrix 

The web service recommendation based on collaborative filtering is based on the historical QoS 

data of the service, for which it is necessary to obtain the QoS records generated when the user 

invokes the service. As mentioned earlier, there are mainly two methods. One method is to use 

feedback from service users, that is, to allow and encourage users to provide feedback on the QoS 

performance of a Web service after using it, including response time, availability, and reputation. 

Another approach is to use a service QoS monitoring system that monitors service invocations and 

records its QoS information.  

In the traditional Web service deployment method, this method is difficult to implement, because 

Web services are often deployed on the provider's server, and the QoS of the service is difficult to 

monitor. However, with the widespread application of cloud computing platforms, more and more 

Web services are deployed on public cloud computing platforms, so cloud computing platform 

providers have the ability to use service QoS monitoring systems to monitor the quality of services 

deployed on them . In reality, such a service QoS monitoring system may even become an 

infrastructure of a Cloud computing scenario. The QoS records generated by the service invocation 

of all users can be represented by a matrix, referred to herein as a QoS matrix, wherein each QoS 

record may include multiple QoS parameter values. Fig 2: A Web Service Invocation Scenario. 

For ease of explanation later, we use the following notation to define users, services, matrices and 

QoS records: 

(1)Let U represent the set of all service users, and S represent the set of all Web services. 

(2)Represents the QoS records generated by all users calling services. Each row represents the 

QoS vector of a user; each column represents the QoS vector of a service; each QoS record represents 

the QoS parameter value generated by user ui calling service sj. Null if ui has not called service sj. 

(3)In practice, since a user only uses very few Web services, the above QoS matrix should be very 

sparse. 
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Figure 2: A Web Service Invocation Scenario  

4.1.1 Traditional Factorization Machine Model 

Collaborative filtering technology has been widely welcomed since it was proposed, and it has 

also been widely used in the industry. Various supplements and improvements to its model emerge 

in an endless stream. Especially since the Netflix Challenge started in 2006, the factorization model, 
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also known as the latent factor model, has become the hottest research topic in the recommendation 

field in recent years. The advantage of FM is that it can simulate the factorization model through 

eigenvectors, which not only combines the generality and applicability of the feature engineering 

method, but also can use the factorization model to analyze the interaction between different 

categories of variables. Modeling estimation, with the help of the open source implementation tool 

libFM, can quickly complete the learning task and achieve good accuracy. In addition, FM can handle 

high-dimensional data in big data environment, can estimate parameters even in sparse data, and has 

the advantage of linear complexity, which is a general factor model for user interest recommendation 

or rating prediction. 

In statistics, the polynomial regression analysis method that studies a dependent variable and one 

or more independent variables is called polynomial regression. Polynomial regression is a form of 

linear regression in which the relationship between the independent variable and the dependent 

variable can be expressed as an nth-order polynomial. Steffen removed the autocorrelation term in 

the polynomial regression, and decomposed the interaction between the categorical variables to obtain 

the factorization machine model. The second-order factorization machine model expression is defined 

as: 
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The model parameters are: 
kpp RVRWRw  ,,0  

pk  dimension representing factorization， iv represents the i vector with k features in the V 

matrix. k k is an assumed value of a positive integer representing the dimension of the eigenvector 

matrix. 0w stands for global bias, iw represents the weight of the i  feature variable.  ji vv ,

represents the inner product of two low-rank matrices,  ji vv , It is expressed as follows: 
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After defining the FM model, we need to learn the parameter VWw ,,0  from the training set.For 

the convenience of expression, the parameters in the FM model are uniformly expressed as:

},,,,,,{ ,1,110 kpp vvwww  。As with any kind of supervised learning, in order to optimize the 

model parameters, a loss function L needs to be defined to minimize the error between the observed 

data S and the model:             
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For each pair ),( yx in the observed data set, find the sum of the errors between the observed value 

y  and the predicted value )|( xy


, and minimize it to obtain the best parameter set  . The loss 

function L is defined as follows: 
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The FM model contains a large number of parameters, especially when the factorization dimension 

k is large, then a regularization term needs to be added to prevent the model from overfitting. The 

regularization formula is as follows:  
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321 ,,  represents the coefficient of regularization. After adding the regularization term, the 

optimization function becomes:  

),,(Re)),((minarg)( ,0),( fiiSyx
vwwgyxyLSOPT   




         (6) 

In the formula, )(xy


is the final predicted value of FM, and y is the real value. In order to minimize 

the loss function, the stochastic gradient descent method (SGD) is introduced to optimize the learning, 

and for each pair of samples in the observation data, the direction of the gradient descent of the 

objective function is carried out. , iterate as follows: 
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Finally, the stochastic gradient descent method finally obtains the required parameters through the 

following formula: 
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0 is the learning rate during calculation, or it can be understood as the descending speed. If the 

value is too large, the model may not converge, and if the value is too small, the convergence speed 

will be too slow. 

4.2 An Improved Factorization Machine Model Recommendation Method 

We combined the advantages of memory-based and model-based to propose a new framework in 

order to be able to make recommendations for related groups. Our method uses clustering to calculate 

groups and smooth users who have not be rated. Use clustering to smooth integrate the advantages of 

memory-based and model-based methods. Predictions are make for unrated users in the group by 

using information about the ratings of closely related users in the group, which allows missing values 

to be filled in. In addition, assuming that for active users, the nearest neighbors should also be the 

top-k most similar clusters, we only need to select the nearest neighbors among the top-k most similar 

clusters, which makes the system scalable. 

Since the FM model has the advantages of its high accuracy and low complexity, we combine the 

location information and the FM model to improve the prediction performance of Web service QoS. 

The formula for calculating FM can be written as follows:   




iuiu vvwwwxy ,)( 0
              (9) 

Among them, x represents a service invocation of the user, and y is the QoS value generated by 

the service invocation. Our proposed location-aware factorization machine takes into account the 

characteristics of similar users and similar services, and the calculation formula is defined as follows: 

（13

） 
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uN  is the set of similar users for user u, 
iN  is the set of similar services for service i, || uN  and 

|| iN  is the size of the user set and service set, respectively. 

4.2.1 Experimental Datasets 

To evaluate the validity of the experiments, we adopt two real datasets QoSDataset 1 and 

QoSDataset 2 obtained from the wsdream.com website, which have been commonly used to evaluate 

the performance of web service QoS prediction algorithms, described as follows : 

(1)QoSDataset 1 contains about 1.5 million service call records for 100 web services distributed 

in 25 countries. The data format of the Web service call record is show in Table 1. Each record 

contains fields such as user IP, service ID, response time (RTT), data size, and HTTP return code. By 

processing the records, we get 15,000 users and a RTT matrix. Finally, we extract 5,550 records from 

1.5 million records of Web service calls to carry out the experiment. 

(2)QoSDataset 2 obtained 1,974,675 QoS records by invoking 5,825 Web services in 73 countries 

by 339 users in 30 countries. At the same time, the dataset also records the IP addresses of these users, 

the URLs of the services and the countries they are located in, as well as the QoS records generated 

by each user calling each web service. The RTT information is extracted from this data set, and the 

RTT matrix of 339 user × 5825 services is obtained. More descriptions of this dataset are show in 

Table 2. Through the analysis, 339 users are distributed in 136 autonomous systems and 30 countries, 

and 5825 services are distributed in 1021 autonomous systems and 73 countries. 

4.2.2 Evaluation Metrics 

The metrics for evaluating the recommendation quality of recommender systems are measured by 

Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). The accuracy of the prediction 

is measured by calculating the deviation between the predicted user rating and the actual user rating, 

defined as: 
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It can be observe from the formula that RMSE is more sensitive to larger errors, so it can detect 

larger errors well. Smaller values of MAE and RMSE indicate better prediction performance of the 

prediction method, and vice versa. 

4.2.3 Performance comparison 

Results of running various Web service QoS prediction methods on QoS_Dataset#1 and 
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QoS_Dataset#2. Regardless of the matrix density, our method has smaller MAE and RMSE than 

other methods, indicating that our method has higher prediction accuracy. Relatively speaking, the 

performance of FM is higher than other traditional collaborative filtering models and matrix 

factorization models. However, compared to FM, our method further improves the accuracy of QoS 

prediction due to the explicit consideration of service and user location factors. We can also observe 

that when the matrix density is small, regardless of the method, the MAE and RMSE become larger, 

which means that the data sparsity does have a greater impact on the QoS prediction method based 

on collaborative filtering. Exactly how matrix density affects QoS predictions will be evaluated later. 

Table 2: Performance Comparison (The smaller the MAE and RMSE values, the higher the 

prediction accuracy of this method) 

Attribute 
 

Method 

Matrix Density=5% 
Matrix 

Density=10% 
Matrix Density=15% 

MAE RMSE MAE RMSE MAE RMSE 

Dataset#1 

UPCC 0.9553 2.1269 0.7823 1.8569 0.6716 1.7264 

IPCC 1.1026 2.2583 0.8780 1.9893 0.7840 1.8628 

FM 0.5380 1.3690 0.4826 1.2386 0.4565 1.1815 

Our 0.5185 1.3159 0.4547 1.2136 0.4358 1.1564 

Dataset#2 

UPCC 0.9472 1.9466 0.8775 1.7550 0.7191 1.6628 

IPCC 0.8344 1.8269 0.7362 1.6288 0.6365 1.5463 

FM 0.5380 1.3690 0.4826 1.2386 0.4565 1.1815 

Our 0.5136 1.3045 0.4498 1.2069 0.4259 1.1479 

5. Summary 

Aiming at the QoS-aware Web service recommendation problem, this paper proposes an improved 

factorization machine model. The method first considers the network-dependent characteristics of 

Web service QoS, and combines the network location information of users and Web services with the 

classical factorization machine model to predict the user's QoS experience on unknown services, 

thereby providing support for Web service recommendation. Experimental results on real datasets 

show that by using the factorization machine model, the QoS prediction accuracy is significantly 

improved compared to previous methods. Moreover, the factorization machine model has linear 

computational complexity, which can not only solve the problems of data sparseness and cold start, 

but also solve the problem of poor scalability of traditional collaborative filtering algorithms. 
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