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Abstract: Since the United Nations Climate Change Conference shifted people's attention to 

the content of greenhouse gases in the atmosphere, more and more countries and cities have 

set their own carbon neutral targets. There is evidence that about 70% of greenhouse gas 

emissions are generated in cities. How to reduce carbon emissions in the process of urban 

development has become a primary concern. According to China's statistics in 2020, 15% of 

carbon emissions come from the transportation sector. About 90% of the carbon emissions 

generated in the field of transportation are from road traffic. This thesis used 11 indicator 

data of 35 cities in China about city size, traffic space, traffic time and public transport, and 

conducted bivariate correlation analysis and scatter correlation analysis through SPSS26.0 

software. It was proved that urban population, urban area, commuting space radius, one-way 

commuting distance and one-way commuting time showed positive correlation with urban 

transport carbon emissions. The 2 indicators of workday vehicle peak speed and 5km 

commuting ratio showed negative correlations. The thesis then used the natural logarithm 

values of the seven correlation indicators to build a linear regression model, using a stepwise 

approach to exclude compounding and co-existence between indicators, and further 

calculated that the significant influencing factors of one-way commuting distance and 

workday vehicle peak speed had a significant linear relationship with urban carbon emissions. 

Finally the thesis proposed urban development planning recommendations for the integration 

of planning in new urban areas, strengthening road accessibility in old urban areas and 

vigorously developing public transport facilities based on the influencing factors of transport 

carbon emissions.

1. Introduction 

1.1. The impact of Transportation on the Achievement of Cities' Carbon Neutrality Goals 

In December 2015, countries committed in the Paris Agreement to control the global average 

temperature rise within 2℃compared with that before industrialization, and strive to control it within 

1.5℃, and achieve the goal of global "carbon neutrality" by 2050-2100 [1]. There are two ways to 
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achieve carbon neutrality: offsetting and reducing carbon emissions with reduced carbon emissions. 

The former can offset the reduced carbon emissions in other places with the carbon released by human 

activities through the carbon compensation mechanism, so as to achieve carbon neutral results, such 

as tree planting and carbon capture. The second approach focuses on reducing carbon emissions from 

various human activities as much as possible, for example, by using renewable energy to avoid carbon 

dioxide emissions into the atmosphere due to the combustion of fossil fuels. Compared with the 

former, the use of the second method is constantly mentioned in many fields. According to the 

statistics of the International Energy Agency (IEA, 2021), the carbon emissions of the transportation 

sector accounted for 24% of the global carbon emissions in 2019, becoming the second largest 

emission sector in the world [2]. Therefore, many scholars and institutions focus on how to reduce 

the huge carbon emissions brought by the transportation sector. 

China has formulated a long-term strategy to achieve net zero emissions by 2060, and one of the 

specific goals is to reach the peak of carbon emissions by 2030. In order to achieve this commitment, 

it is necessary to discuss the reduction of carbon emissions in various fields. According to the report 

of China Energy Administration in 2020, about 15% of China's carbon emissions come from the 

transportation sector [3]. In this field, the carbon emissions generated by road traffic account for the 

largest proportion. Under the current policy scenario, the carbon dioxide emissions from road 

transportation will reach a peak of 1415.5 million tons in 2033 [4]. 

1.2. The transport Decarbonisation Dilemma 

Transport, which includes the commuting of people and the transport of goods, plays an important 

role in the emission of carbon dioxide. In order to reduce carbon dioxide emissions in the future, on 

the one hand, transport policies need to be developed in such a way as to improve vehicle efficiency 

and increase the use of carbon-neutral alternative fuels. On the other hand, carbon dioxide emissions 

can be reduced through better transport planning, for example by reducing traffic congestion, 

lowering commuting times and avoiding more detours. Transport planning and its impact on carbon 

dioxide emissions can be examined by using detailed energy and emissions models and relating them 

to real-world driving patterns and traffic conditions. Many countries have conducted studies on how 

to reduce urban carbon emissions through better transport planning, and Barth et al. (2008), using a 

typical traffic situation in Southern California as an example, found that carbon dioxide emissions 

could be reduced by up to 20% through three different strategies [5]. Among these are the reform of 

urban traffic to reduce severe congestion, the use of congestion mitigation strategies to make vehicles 

move faster on average, and the use of shock wave suppression techniques to further reduce traffic-

related acceleration and deceleration in congested road conditions where vehicles have to stop and go 

several times. It follows that the design of a new, improved, low-carbon urban transport system is a 

vital element in helping to reduce urban carbon dioxide emissions and achieve urban carbon neutrality 

targets, among other issues. After obtaining this result, in order to reverse this huge trend, IEA 

proposed the combination of technical and behavioral measures: avoidance, transfer, improvement 

and conversion (IEA, 2012) [6]. According to the proposal of IEA, comprehensive traffic planning 

should be carried out in urban planning to help avoid unnecessary vehicle travel, or example, by 

shortening the distance between home and workplace, or improving the integration of public transport, 

cycling and walking. Some of these measures may even be cheaper and easier to implement than 

developing electric vehicles or developing lighter materials. Instead of forcing residents to give up 

travelling by car through various policies, reasonable traffic planning can guide residents to choose a 

lower carbon travel mode by reducing congestion and facilitating travel. There is no doubt that this 

change will bring significant common benefits, such as more livable streets. 
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1.3. Hypothesis, Aims and Objectives of the Study 

There are many factors that influence urban transport carbon emissions. This thesis analysied 

factors related to urban planning and road planning to demonstrate the factors that influence urban 

commuting carbon emissions as well as the pathways of influence. The thesis hypothesised that the 

overall planning and road planning of cities of different sizes have an impact on the transport space, 

travel time and public transport choices of residents commuting to work, while the performance of 

urban commuting would also have a degree of influence on commuting carbon emissions. The aim 

of the study is to find the influencing factors that affect the carbon emissions of urban commuting, 

and then to use these factors to make appropriate recommendations for urban planning and transport 

planning. 

2. Factors Influencing Urban Planning on Low Carbon 

2.1. Spatial Autocorrelation Theory 

Tobler (1970) pointed out that "the first law of geography is that everything is correlated with 

everything else, but what is near has a stronger correlation than what is far". Spatial autocorrelation 

refers to the potential interdependence between observations of a number of variables within the same 

distribution area(Getis, 2008)[7].In the study of the correlation between urban carbon emissions and 

urban planning, the theory of spatial autocorrelation could be understood as the idea that elements in 

space do not exist alone, but are influenced by each other and spatial interactions(Bautista-Hernández, 

D. 2019)[8]. Urban carbon emissions are affected by industrial structure, energy structure, population 

levels, the size of the built-up area, transport planning, distance to work and residence, commercial 

space and many other factors Li et al., 2022. [9] Among them, the factors related to urban space and 

road planning mainly include the distance between work and residence, traffic structure, road network 

density, public transport services, etc. Other factors about the industrial structure, commercial 

prosperity, energy structure and population size of the city are very weakly correlated with the carbon 

emissions caused by urban space and road layout. Therefore, the concept of carbon emissions related 

to urban planning can be narrowed down to urban commuting carbon emissions, which can more 

accurately reflect the influence of relatively stable index factors such as urban spatial planning, 

occupational and residential planning, road planning and public transport planning on urban carbon 

emissions. 

Urban space interacts with the activities of the population and is divided into residential space and 

employment space in order to meet the occupational needs of the population. The employment 

structure involves the primary, secondary and tertiary sectors, which have huge spatial differences. In 

order to unify the treatment, it can be expressed in terms of commuter transport space, with specific 

indicators covering road network density, weekday peak vehicle speed, commuter space radius, one-

way commuting distance, and separation between jobs and dwellings. 

2.2. Urban land Use Theory 

In the development of urban land use theory, Homer Hoye proposed the Sector Theory, which 

suggests that the influence of directional accessibility and directional inertia of urban transport routes 

will lead to the formation of commercial, industrial and educational land on their the influence of 

Directional Accessibility and Directional Inertia Beauregard, 2007) [10]. Hansen proposes a land use-

transport interaction loop model to explain the interaction between land use and commuter travel. The 

different types of land use make it necessary for urban residents to overcome the cost of spatial 
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distance to move around to meet their needs (commuting to work, school, etc.). In terms of urban 

transport, the choice of public transport routes and locations leads to differences in accessibility to 

different locations in urban space, which affects residents' choice of travel mode (Hansen, 1959) [11]. 

Residential commuter transport is generally reflected through the commuting time of urban 

workers and the stability of urban public transport facilities. The commuting time of urban workers 

can cover two indicators: one-way commuting time and 5km commuting ratio. Urban public transport 

facilities can be represented by two indicators: the proportion of commuting covered by 800 metres 

of rail and the proportion of 45-minute bus service capacity. 

2.3. Factors Influencing Urban Commuting Carbon Emissions 

According to the theory of spatial autocorrelation and urban land use theory, consideration of urban 

carbon emissions can be narrowed down to a relatively fixed range of urban commuting carbon 

emissions, and the impact of urban road planning on urban carbon emissions can be considered 

around the relatively stable traffic routes in the city [12-14]. Specific impact factors can be divided 

into four categories of secondary indicators 11 tertiary indicators, see the following Table 1. 

Table 1: Table of Factors Affecting Carbon Emission of Urban Commuting 

One-level indicators Two-level indicators Three-level indicators 

 

 

Urban spatial layout 

 

 

Urban size Urban population 

Urban area 

Transport space Road network density 

Workday vehicle peak speed 

Commuter space radius 

One-way commuting distance 

Degree of separation between workplace and 

residence 

Commuting time One-way commuting time 

5km commuting ratio 

Public transport 

facilities 

Proportion of commuting covered by tracks 

Proportion of 45-minute bus service capacity 

3. Methods and Data 

3.1. Methods 

3.1.1. Data Testing 

In conducting the analysis of the factors influencing urban commuting carbon emissions, it was 

first necessary to verify that all panel data showed an overall normal distribution. The paper uses the 

"descriptive statistics-exploration-pp/qq plot" tool in SPSS 26.0 software to generate frequency plots 

(plus bell-shaped curves) for graphical analysis and to lay a viable data base for subsequent 

correlation and regression analyses. 

3.1.2. Correlation Analysis 

In the search for significant correlations between urban commuting carbon emissions and various 

factors of urban spatial layout, the thesis used Pearson Correlation Analysis in SPSS26.0 to analyse 

the correlation between various indicators of urban spatial layout and urban residents' commuting 

20



carbon emissions. The key indicators of interest are as follows.  

Pearson correlation (R-value): reflects the degree of correlation between two variables, and takes 

a value between -1~ +1. If the value is greater than 0, the two variables are positively correlated, 

while if the value is less than 0, the two variables are negatively correlated. The closer the R-value is 

to 0, the weaker the correlation is. Generally speaking, a positive R-value of 0.2 or less indicates a 

very weak correlation, R-value of 0.2~0.4 indicates an average correlation, R-value of 0.4~0.7 

indicates a strong correlation, and R-value of 0.7 or more indicates a very strong correlation. 

Significance value (P-value): used to test whether the correlation coefficient is statistically 

significant. When the P-value is greater than 0.1, it means that its corresponding correlation is 

statistically insignificant because the pattern is not significant, it does not indicate that the two are 

correlated. When 0.05 ≤ P-value ≤ 0.1, it means that its corresponding R-value is somewhat 

significant, which can be interpreted as 90% of the sample supporting the conclusion that the two are 

significant. When 0.01 ≤ P-value ≤ 0.05, the corresponding R-value is highly significant, which can 

be interpreted as 95% of the sample supporting the conclusion that the two are significant. When the 

P-value is <0.01, it means that the corresponding R-value is highly significant and can be interpreted 

as 99% of the sample supporting the conclusion that the two are significant. Most studies use P-value 

of 0.05 as the threshold for significance.  

The correlation analysis allows for the preliminary identification of urban spatial layout indicators 

that affect the carbon emissions of urban residents commuting, providing conditions for the 

subsequent establishment of regression equations and further research on the quantitative relationship 

between urban spatial layout and the intensity of stabbing in carbon emissions. 

3.1.3. Regression Analysis 

The purpose of modelling regression analysis is to further analyse the degree of influence of the 

independent variable (x) on the dependent variable (y). In this thesis, the model will be built using 

multiple regression analysis: 

y = b1x+b2x+b3x+⋯ + bnx+c 

"c" is the regression constant;  

bn (n=1,2,3, n) is the regression parameter; 

The following indicators need to be looked at in the model:  

First, in the model summary table, R denotes goodness of fit, which is a measure of how well the 

estimated model fits the observations. The goodness of fit statistic is the coefficient of determination 

'R2', and the closer the value is to 1 the better the model fits. For general bounds in the natural sciences, 

a goodness-of-fit-R of 0.1(R2 of 0.01) is generally considered a small effect, 0.3 a medium (R2 of 

0.09) and 0.5 a large (R2 of 0.25). Also of note in this table is the Durbin-Watson-value (DW-value), 

which is used to test for autocorrelation of the residuals in the regression analysis, the closer the value 

to 2 the better. 

Secondly, in the Anova table, it is also important to look at the F-value and the sig-value, which 

reflect the usefulness of the overall regression equation. It is generally accepted that a regression 

equation is useful when the F-value corresponds to a sig-value of less than 0.05. In addition, the F-

value is a significance test for the regression equation. If F>Fa, the original hypothesis is rejected, i. 

e. the explanatory variables included in the model combine to have a significant effect on the 

explanatory variables, and if not, there is no significant effect.  

Again, VIF is the variance expansion factor, which is used to diagnose the presence of 

multicollinearity in the independent variables. When 0<VIF<10, there is no multicollinearity, then it 

will not affect the regression analysis results; when 10≤VIF<100, there is strong multicollinearity; 

when VIF≥100, there is severe multicollinearity and the regression analysis results are difficult to be 

established. 
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Finally, the coefficient tables present the results of the significance tests for the independent 

variables (using a one-sample t-test), i. e. the independent variables that have a significant effect on 

the dependent variable (P-value ≤ 0.05) are selected. As each independent variable has a different 

magnitude and range of values, B does not reflect the magnitude of the effect of each independent 

variable on the dependent variable, so the standardised coefficients are used. The value of the 

standardised coefficient Beta in the table is the final coefficient of influence, with larger values 

indicating a greater influence on the dependent variable. 

3.2 Interpretation and Calculation of Indicators 

In the thesis data, 2 indicators of urban scale refed to «China Urban Construction Statistical 

Yearbook 2020», and 3 secondary indicators of traffic space, traffic time and public transport and 9 

tertiary indicators refer to the relevant research of «China Major Cities Road Network Density 

Monitoring Report 2020», which were based on the GPS data of taxis, some in-car navigation data, 

crowdsourcing track data, two passengers and one dangerous (referring to chartered buses engaged 

in tourism, class 3 or more buses and special road vehicles transporting dangerous chemicals, 

fireworks, firecrackers and civil explosives) in each city. In 2020, 25 million records of 3.7 million 

vehicles had been available every minute across China. The calculation methods and ranges for each 

indicator would been explained below. 

3.2.1. Commuting Carbon Emissions 

The commuting carbon emissions indicator is expressed in terms of carbon emissions from one-

way commuting transport for 10,000 people in a city, and the formula takes into account four 

indicators: the one-way commuting distance per inhabitant of a city, the means of transport used, all 

the fuels used by the means of transport, and the carbon emissions per unit of each fuel. 

3.2.2. Urban Size 

Urban district (or main city) is a densely populated area of a city with a relatively developed 

industrial, commercial, service, transport, cultural, educational and health sector. Urban population is 

the number of people resident within the urban area and Urban area is the overall area within the 

urban area. These 2 data indicators are generally obtained through the statistical yearbooks of 

individual cities or the China Urban Construction Statistical Yearbook. 

3.2.3. Transport Space 

Road network density refers to the ratio of the total road mileage within a certain range to the area 

of that range. In order to ensure the comparability of road network density across cities and the 

consistency of statistical calibre, the thesis adopts the standards in the "Monitoring Report on Road 

Network Density in Major Cities in China 2020" and takes the built-up area of the central city of each 

sample city as the scope of index calculation, where roads are based on electronic map mapping data, 

including urban expressways, primary roads, secondary roads, feeder roads and major neighbourhood 

roads within the scope. 

Workday vehicle peak speed is the average of the highest peak vehicle movement speed for each 

street in the urban area detected by the city for 24 hours a day during working hours from Monday to 

Friday, which is then aggregated and calculated on an annual basis. Generally raw statistics are 

obtained from crowdsourced data collection by the city's traffic management department and big data 

calculations are performed. 

Commuter space radius is a spatial ellipse covering 90% of the urban commuting population's 
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residential and employment distribution. The long axis of the ellipse is used to define the spatial 

radius of commuting as a measure of the spatial radiation range of urban commuting, the larger the 

spatial radius of commuting, the larger the spatial range of closely linked urban commuting. 

One-way commuting distance is calculated using the shortest distance of the commuting road 

network from the 250m grid of the Internet map: the OD (Optical Distance) inter-road network 

distance, the length of the distance calculated based on the residents' single-directional pick-up and 

drop-off links. 

Degree of separation between workplace and residence is the minimum commuting distance that 

can theoretically be achieved by exchanging places of employment under the conditions of the 

established employment and residence layout, without taking into account employment differences 

and human choices. Cities obtain data by fixing the location of each resident and measuring the 

average distance to the nearest place of employment. It is a measure of the spatial layout match of 

employment and residence in the city. The smaller the separation of employment and residence, the 

better the balance of the spatial supply of employment and residence in the city. 

3.2.4. Commuting Time 

One-way commuting time is the average of the time taken by different modes of transport to travel 

from their place of residence to their place of employment during the morning rush hour for 

commuters in the central city. It is generally calculated through a multi-level, large-scale 

questionnaire, and is an intuitive way of perceiving people's commuting experience, and is an 

important factor influencing the quality of life of residents. 

5km commuting ratio refers to the proportion of commuters who travel less than 5km each way in 

the central city, and is used as an indicator to measure the balance of jobs and housing in the city. 

3.2.5. Public Transportation Facilities 

Proportion of commuters covered by tracks refers to the proportion of commuters in the central 

city who live and work within 1,000 metres of a rail station, reflecting the match between the rail 

network and the organisation of workplace space.  

Proportion of 45-minute bus service capacity refers to the proportion of people who can commute 

to work within 45 minutes by rail, bus and other modes of public transport. It is a measure of the city's 

public transport service capacity and reflects the extent to which the public transport system fits in 

with the spatial organisation of jobs and housing. 

3.3. Data 

The paper mainly used 35 key cities in China, including 4 mega-cities with a permanent population 

of over 10 million; 10 mega-cities with a permanent population of over 5 million and under 10 million; 

10 mega-cities with a permanent population of over 3 million and under 5 million; and 11 mega-cities 

with a permanent population of over 1 million and under 3 million. The values of their specific 

indicators were shown in the Table 2. 
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Table 2: Index Value Table of China's 35 Cities in 2020 

City name 

commuting 

transport 

carbon 

emissions(t) 

Urban size Transport space Commuting time Public transport facilities 

Urban 

population 

(Ton/10000p

eople) 

Urban area 

(10000m2) 

Road 

network 

density 

(Km/km2) 

Operating 

space during 

rush hour on 

workdays 

(Km/h) 

Commuter 

space 

radius(km) 

One-way 

commuting 

distance(km) 

Degree of separation 

between workplace 

and residence 
 

One-way 

commuting 

time(min) 

5km 

commuting 

ratio 

Proportion of 

commuting covered by 

tracks 

Proportion 

of 45-

minute 

bus 

service 

capacity 

 Y X12 X12 X21 X22 X23 X24 X25 X31 X32 X41 X42 

Shenzhen 5.5 1343.88 1986.41 9.6 21.8 39 7.6 2.5 36 0.6 0.28 0.57 

             

Shanghai 7 2428.14 6340.5 7.2 19.6 39 8.9 3.8 40 0.48 0.26 0.41 

Guangzhou 6.7 719.14 2256.42 7.1 20.5 31 8.7 3.7 38 0.52 0.3 0.5 

Beijing 8.7 1916.4 16410.54 5.7 19.6 41 11.1 6.7 47 0.38 0.2 0.31 

Chengdu 6.7 760.63 1287.87 8.4 20.3 28 9 4.8 39 0.46 0.26 0.44 

Hangzhou 5.9 415.93 2140.32 7.2 18.2 33 7.4 3.3 35 0.56 0.14 0.47 

Chongqing 5.7 1213.56 7779.14 6.9 21.1 39 8.9 4 40 0.48 0.2 0.42 

Zhengzhou 5.8 416.64 762.41 6.7 20.4 28 8 4.2 36 0.55 0.12 0.47 

Tianjin 4.9 1174.44 2639.78 6.3 22.3 37 8.4 3.3 39 0.52 0.13 0.4 

Wuhan 5.9 611.3 1452 6.2 22.1 29 8.3 3.8 39 0.5 0.27 0.44 

Xi'an 5.6 643.5 942.53 5.8 19.4 27 8.1 4.1 34 0.52 0.12 0.5 

Nanjing 4.8 644.84 4226.41 5.6 21.4 31 8.4 3.8 38 0.5 0.16 0.42 

Qingdao 6.9 433.94 3089.18 5.4 18.8 25 8 4.5 39 0.52 0.14 0.47 

Shenyang 4.6 457 1610 4.9 19.8 31 7.2 3.1 36 0.53 0.1 0.42 

Xiamen 4.7 237.6 401.94 8.5 22.9 29 7.1 2.3 32 0.6 0.12 0.55 

Hefei 4.1 241.34 1126.61 7 21.6 25 7.2 3 34 0.54 0.12 0.44 

Kunming 5.9 406.31 1782.6 6.8 19.7 27 7.3 2.5 33 0.6 0.17 0.47 

Changsha 7.1 396.52 1199.84 6.7 21.4 29 8.2 3.7 34 0.54 0.19 0.47 

Dalian 5 347.83 1523 6.1 21.1 34 7.2 2.5 38 0.54 0.11 0.43 

Taiyuan 2.9 301.93 1000 5.9 22.7 25 6.9 3.1 32 0.57 0.07 0.41 

Changchun 6.5 362.09 3427.42 5.5 19.1 29 7.5 3.6 36 0.51 0.09 0.37 

Harbin 5.2 395.96 473 5.1 18.3 33 7.2 2.8 35 0.55 0.03 0.46 

Jinan 6.1 480.89 2419.15 4.9 18.1 31 7.7 3.6 34 0.56 0.01 0.43 

Urumqi 6.1 225.65 842.09 3.5 23.6 29 6.9 2.6 34 0.55 0.03 0.37 

Fuzhou 4 238.85 539.38 7.4 22.5 24 6.9 2.7 34 0.61 0.14 0.52 

Nanning 4.1 252.56 865.08 7.4 22.1 21 6.8 2.7 33 0.55 0.18 0.47 

Ningbo 5 217.53 1380.8 6.8 20 31 6.6 2.7 31 0.61 0.09 0.48 

Nanchang 4.1 282.47 428.4 6.5 21.6 23 7.2 3.6 34 0.56 0.13 0.44 

Guiyang 5.2 219.5 12330 6.3 21.1 26 7.5 3.1 34 0.57 0.04 0.46 

Haikou 4.8 131 562.4 5.8 19.6 21 7 3.3 30 0.63 0.01 0.54 

Xining 5.8 134.11 396.65 5.5 20.8 27 8.5 5.2 35 0.55 0.03 0.48 

Shijiazhuang 4.5 331.65 518.81 5.4 22.9 27 8 5.3 35 0.55 0.09 0.43 

Yinchuan 3.9 129.13 562.49 4.9 20.9 28 8.1 5.5 33 0.57 0.09 0.42 

Hohhot 5.5 145 272.16 4.6 21.9 22 6.4 3.2 32 0.58 0.03 0.4 

Lanzhou 3.5 196.04 342.38 4.3 19.6 28 7.2 3.7 33 0.63 0.07 0.47 

Note: Data from《ina Urban Construction Statistical Yearbook 2020》, hina Major Cities Road 

Network Density Monitoring Report 2020 

4. Results 

4.1. Test for Normal Distribution of Data 

 

Figure 1: Statistical Chart of Level III Indicator Data Description 
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According to statistical requirements, all statistical data samples should be tested for overall 

normal distribution. Used the "Descriptive Statistics" function in SPSS software, the 13 statistics for 

the dependent and independent variables were tested and, as shown in Figure 1, the data for all three 

levels of indicators were generally normally distributed, proved that subsequent statistical analysis 

would been carried out. 

Table 3: Descriptive Statistics 

Classification Indicator N Minimum Maximum Mean Std. Deviation 

Commuting 

carbon 

emissions 

Y 35 2.9 8.7 5.39 1.19 

 

Urban size 

X11 35 129.13 2428.14 538.67 510.21 

X12 35 272.16 16410.54 2437.65 3439.30 

 

 

 

Transport 

space 

X21 35 3.5 9.6 6.23 1.25 

X22 35 18.1 23.6 20.77 1.45 

X23 35 21 41 29.34 5.13 

X24 35 6.4 11.1 7.75 .91 

X25 35 2.3 6.7 3.61 .98 

 

Commuting 

time 

X31 35 30 47 35.49 3.31 

X32 35 .38 .63 .55 .05 

 

Public 

transport 

facilities 

X41 35 .01 .30 .13 .08 

X42 35 .31 .57 .45 .05 

The final statistical description of the overall data included frequency analysis, concentration trend 

analysis, dispersion analysis, etc. The results are shown in Table 3. 

4.2. Indicator Correlation Analysis 

4.2.1. Bivariate Correlation Analysis 

The SPSS26.0 bivariate method of correlation function was applied to analyse whether the 11 

independent variable indicators showed significant correlation for urban transport carbon emissions. 

After calculation, the following results were obtained in Table 4. 

Table 4: Ln (Xn) and Ln Y correlation Analysis Table 

LnY Pearson 

Correlation 

1 .526** .521** .081 -.397* .448** 

Sig. (2-tailed)  .001 .001 .643 .018 .007 

N 35 35 35 35 35 35 

 

 

LnY 

 LnX24 LnX25 LnX31 LnX32 LnX41 LnX42 

Pearson 

Correlation 

.598** .325 .589** -.594** .187 -.233 

Sig. (2-tailed) .000 .057 .000 .000 .281 .178 

N 35 35 35 35 35 35 

*. Correlation is significant at the 0.01 level (2-tailed). 

*. Correlation is significant at the 0.05 level (2-tailed). 
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The correlation coefficient for Ln (urban population) was 0.526, with a significant behaviour of 

0.001<0.01, indicated that the higher the urban population, the higher the urban transport carbon 

emissions. Similarly, the correlation coefficient for Ln (urban area) was 0.521, with a significant 

behaviour of 0.001<0.01, indicated that the larger the urban area, the higher the urban transport carbon 

emissions. 

The correlation coefficient of Ln (Workday vehicle peak speed) was -0.397, with a significant 

behaviour of 0.018<0.05, indicated that the smaller the weekday vehicle peak speed in urban areas, 

the higher the urban transport carbon emissions. The correlation coefficient of Ln (Commuter space 

radius) was 0.448, with a significant behaviour of 0.007<0.01, indicated that the larger the spatial 

radius of commuting in urban areas, the higher the urban transport carbon emissions. the correlation 

coefficient of Ln (One-way commuting distance) was 0.598, with a significant behaviour of 

0.000<0.01, indicated that the larger the one-way commuting distance in urban areas, the higher the 

urban transport carbon emissions. 

The correlation coefficient of Ln (One-way commuting time) is 0.589, with a significant behaviour 

of 0.000<0.01, indicating that the longer the one-way commuting time in urban areas, the higher the 

urban transport carbon emissions. Similarly, the correlation coefficient for Ln (5km commuting ratio) 

is -0.594, with a significant behaviour of 0.000<0.01, indicating that the greater the proportion of 

commuting within 5 km in urban areas, the lower the urban transport carbon emissions. 

4.2.2. Scatter Correlation Analysis 

Based on the results of the above bivariate correlation analysis, seven indicators, namely urban 

population (X11), urban area (X12), workday vehicle peak speed (X22), commuting spatial radius 

(X23), one-way commuting distance (X24), one-way commuting time (X31) and 5km commuting 

ratio (X32), which were significantly correlated with urban transport carbon emissions, were screened 

and correlated with urban transport carbon emissions indicators respectively Scatter correlation 

analysis was conducted to verify the accuracy of the bivariate correlation. The graphical function of 

SPSS 26.0 was applied to form the Figure 2. 

 

Figure 2: Ln (Xn) and Ln Y scatter correlation analysis diagram 

From the scatter plot, it could be verified that urban population (X11), urban area (X12), 

commuting spatial radius (X23), one-way commuting distance (X24) and one-way commuting time 

(X31) show a relatively obvious positive correlation with urban transport carbon emissions, while 
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workday vehicle peak speed (X22) and 5km commuting ratio(X32) showed a negative correlation, 

and the indicator X22 is more scattered and shows a weaker correlation compared to the other 6 

indicators. The scatter plot showed results consistent with the bivariate correlation analysis above. 

4.3. Regression Analysis of Indicators and Urban Transport Carbon Emissions 

Table 5: Model Summary 

Model R 

R 

Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

Change Statistics 

Durbin-

Watson 

R Square 

Change 

F 

Change df1 df2 

Sig. F 

Change 

1 0.598a 0.358 0.339 0.18348 0.358 18.409 1 33 0.000  

2 0.665b 0.443 0.408 0.17361 0.085 4.861 1 32 0.035 2.519 

a. Predictors: (Constant), LnX24 

b. Predictors: (Constant), LnX24, LnX22 

c. Dependent Variable: LnY 

Using the natural logarithm values of the correlation indicators, a linear regression model was 

established using SPSS26.0 software's, and a stepwise approach was used to exclude the 

compounding and co-existence of the 7 influencing indicators to further explore the common 

influence relationship of multiple indicators on urban transport carbon emissions. 

The results showed that 2 regression models were established (see Table 5), with the first step 

indicator Ln (one-way commuting distance) entering the regression model to form Model 1, and the 

second step indicator Ln (workday vehicle peak speed) joining Model 1 to form Model 2. The 

adjusted R2 for Model 2 was the highest, reaching 0.408, indicated that the independent variables can 

explain a total of 40.8% of the variation in the dependent variable, with Durbin-Watson value reached 

2.519, indicated that the proposed model had some convincing power. 

Also, from the ANOVA coefficient table (see Table 6), it could be concluded that the established 

regression model had a significance Sig value <0.01 and could be considered significantly reasonable. 

Table 6: ANOVA 

Model 

Sum of 

Squares df 

Mean 

Square F Sig. 

1 Regression 0.620 1 0.620 18.409 0.000b 

Residual 1.111 33 0.034   

Total 1.731 34    

2 Regression 0.766 2 0.383 12.712 0.000c 

Residual 0.964 32 0.030   

Total 1.731 34    

a. Dependent Variable: LnY 

b. Predictors: (Constant), LnX24 

c. Predictors: (Constant), LnX24, LnX22 

Finally, SPSS26.0 software calculated the regression analysis coefficients of the 2 indicators X24 

and X22 and urban transport carbon emissions Table 7 to form a multiple regression equation. 
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Table 7: Coefficients 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Collinearity 

Statistics 

B Std. Error Beta VIF 

2 (Constant) 2.279 1.513  1.507 0.142  

LnX24 1.107 0.274 0.544 4.049 0.000 1.035 

LnX22 -0.950 0.431 -0.296 -2.205 0.035 1.035 

a. Dependent Variable: LnY 

The ANOVA resulted from Table 6 and Table 7, F=12.712, indicated that its test corresponded to 

a value of P=0.005 and the covariance statistic VIF=1.035<5, indicated that there was no variance 

chi-square problem between the indicators of the independent variables and that the hypothesis of the 

existence of a regression between urban transport carbon emissions (Y) and the indicators of the 

independent variables holds. The multiple linear regression equation could be obtained according to 

the coefficient table. 

)22ln(296.0)24ln(544.0279.2ln XXY        (1) 

Where: Y represents urban transport carbon emissions. 

X24 represents one-way commuting distance. 

X22 represents workday vehicle peak speed 

As could be judged from the regression equation, combined with Beta, it could be seen that one-

way commuting distance had the greatest impact on urban transport carbon emissions, with a positive 

correlation; workday vehicle peak speed had the next greatest impact, with a negative correlation. 

5. Conclusions and Recommendations 

5.1. Conclusion 

This work adopted relevant data from 35 large and medium-sized cities in China for correlation 

and regression analysis, aiming to assess the relationship between urban transport carbon emissions 

and certain factors affecting travel in urban planning, such as road network density, commuting speed, 

commuting radius, separation of jobs and housing, commuting time, rail and bus installation, urban 

population and area. The following conclusions could be drawn from the analysis. 

First, urban planning had a significant role in urban population, urban area, commuting space 

radius, commuting distance, commuting time and commuting speed factors in transport commuting 

for urban transport carbon emissions. It indicated that in the urban planning process, the layout of 

urban living space and working space, the distance between the two and the ease of access had 

significant significance on the carbon emissions in commuting. 

Secondly, through regression analysis, it was concluded that among the significant influencing 

factors, commuting distance and commuting speed had a significant linear relationship with urban 

carbon emissions. This suggests that urban planning should pay more attention to reducing the 

distance between residents' places of residence and work, and effectively strengthen urban street 

planning to increase the accessibility of streets and the smoothness of traffic, effectively increasing 

residents' commuting speed. 

5.2. Urban Planning Proposals 

This work, despite the limitations of adopting only 12 indicator factors for 35 cities in China, was 
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considered effective in linking travel variables due to urban planning to urban transport carbon 

emissions. This effort has implications for both the upgrading of existing urban roads and the 

construction of new urban areas. 

Firstly, for new urban areas it is important to develop an integrated mindset. From the above 

analysis, it is clear that the factors affecting urban transport carbon emissions are not independent of 

each other, but influence each other. For example, the separation of jobs and housing affects factors 

such as commuting radius and commuting time, and the density of the road network plays a significant 

role in commuting time and commuting speed. In countries and regions around the world where 

carbon emissions from transport are producing impressive results, the future of cities will be an 

integrated process. Better urban planning will mean that the specific division of work, leisure and 

recreation in cities will be broken down, which will on the one hand improve the commuting 

experience of residents and on the other hand gradually reduce unnecessary carbon emissions from 

transport. 

Secondly, for older urban areas, road accessibility improvements should be enhanced, as well as 

the construction of feeder roads between houses and work areas, effectively reducing the number of 

commuting vehicles on main roads and effectively reducing commuting times. At the same time, 

increasing the installation of bicycle lanes and footpaths and increasing the frequency of non-

motorised commuting for residents within a 3km commuting radius will effectively reduce urban 

transport carbon emissions. 

Thirdly, public transport facilities should be developed vigorously. Especially for mega and large 

cities, the separation of jobs and housing in old urban areas cannot be changed. The government 

should plan transportation lines underground and in the air, speed up the construction of metro and 

light rail, increase the convenience of residents' travel, effectively reduce the distance and time of 

private car commuting, and improve the speed of road commuting, all of which will play a good role 

in reducing urban transportation carbon emissions. 
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