# To Explore the Mechanism of Jinshui Tinling Decoction in the Treatment of Malignant Pleural Effusion Based on Network Pharmacology and Molecular Docking Technology

Baogang Yang<sup>1,a</sup>, Chenguang Yang<sup>2,b,\*</sup>, Jiao Gou<sup>2,c</sup>

<sup>1</sup>Shaanxi University of Traditional Chinese Medicine, Xianyang, 712046, China <sup>2</sup>Shaanxi Hospital of Traditional Chinese Medicine, Xi'an, 710000, China <sup>a</sup>youaremysmile153@163.com, <sup>b</sup>470999091@qq.com, <sup>c</sup>sunnyxjdt@qq.com \*Corresponding author

*Keywords:* Malignant pleural effusion, jingshui Tinling decoction, network pharmacology,  $\beta$ -sitosterol, AKT1, molecular docking

Abstract: Objective To explore the mechanism of action of Jingshui Tinling decoction (JSTLD) treating Malignant pleural effusion (MPE) by using network pharmacology and molecular docking technology. Methods The active components of JSTLD were screened by TCMSP database and UniProt database. The targets related to MPE were screened by Genecards database and OMIM database, and the intersection targets of active components and disease-related targets were obtained, namely, the targets of JSTLD in the treatment of MPE. Cytoscape 3.8.2 software was used to construct the "drug-active ingredient-target" network, and the core active components in the network were analyzed. The intersection targets were imported into STRING database for protein interaction (PPI) network analysis, and core targets were screened out. GO and KEGG enrichment analysis of core targets were carried out. Autodock vina 1.1.2 software was used for molecular docking of core components and targets. Results Network pharmacological prediction showed that there were 153 active components of JSTLD, 8463 corresponding target genes, 1539 MPE diseaserelated targets, and 106 intersection targets. The core active components such as quercetin, β-sitosterol, kaempferol and stigmasterol were obtained. AKT1, TP53, IL1B, CASP3, JUN, EGFR and other core targets; A total of 233 signaling pathways were screened, and the key pathways included cancer pathways. The molecular docking results are good. Conclusion JSTLD may act on AKT1, TP53, IL1B, CASP3, JUN, EGFR and other targets, and inhibit MPE through the cancer pathway and other related pathways.

### **1. Introduction**

Malignant pleural effusion (MPE) is caused by the invasion of the pleura by malignant tumors, which are often directly invaded or metastasized to the pleura by lung cancer, breast cancer, malignant pleural mesothelioma and lymphoma [1]. The appearance of MPE not only causes dyspnea, which seriously affects the quality of life of patients, but also often indicates that the survival of patients is

very limited [2]. At present, the treatment of MPE is mainly based on local treatment such as chest tube drainage and talc internal pleural fixation. According to the different diseases, whether to give chemotherapy, targeting, immune and other systemic treatment. Chest tube drainage and/or talc pleurodesis are recommended by US and European guidelines [2,3], but local treatment only improves dyspnea symptoms and does not prevent MPE production. Although the systemic treatment of MPE targets the primary disease, its efficacy is not ideal. Chemotherapy is only effective for some MPE caused by tumors sensitive to chemotherapy drugs, and the efficacy of targeted and immunotherapy still needs to be verified by large-scale RCT studies [4]. It is still an urgent clinical problem to find a therapeutic method with better efficacy and less adverse reactions. Jinshui Tinling Decoction (JSTLD) was developed by Professor Chenguang Yang of the Oncology Department of Shaanxi Provincial Hospital of Traditional Chinese Medicine based on the "Mingmen" of traditional Chinese medicine and clinical experience [5], and has been awarded the national invention patent [6]. Retrospective clinical research results show that JSTLD can effectively control MPE and prolong the survival of patients [7]. This study intends to explore the effective active ingredients, core targets and potential mechanism of JSTLD in the treatment of MPE by using network pharmacology and molecular docking technology, in order to provide scientific basis for clinical and experimental research.

### 2. Materials and Methods

### 2.1. Screening of active Ingredients and Targets of JSTLD

In this study, through the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP, Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, https://tcmspw.com/tcmspsearch.php) for retrieval, the search conditions were "shudihuang (SD)", "shanyao (SY)", "shanzhuyu (SZY)", "fuling (FL)", "zhuling (ZL)", "zexie (ZX)", "haijinsha (HJS)", "tinglizi (TLZ)", "gouqizi (GQZ)", "sharen (SR)" and "danggui (DG)", respectively. Screening conditions were set according to ADME parameters: oral bioavailability (OB) >30% and druglikeness (DL) >0.18 were considered as screening conditions. To obtain the effective components and target proteins of Jinshui Tinling decoction (JSTLD). Through Uniprot database (https://www.uniprot.org/), enter all target protein names, provided that the constraint conditions are "Popular Human" and "Reviewed" to find the gene name corresponding to a target protein with active component from a human proven protein database, With Perl 5.26.3 software (https://www.perl.org/get.html) to select target genes.

### 2.2. MPE related targets

Through GeneCards database (https://genealacart.genecards.org/) and OMIM database (https://www.omim.org/), the retrieval condition of "Malignant pleural effusion" was used to obtain the relevant target genes of MPE and establish the MPE gene dataset.

#### **2.3.** Construction of "drug-component-target" Network

The visual network diagram of TCM components and intersection targets was constructed using Cytoscape 3.8.2 (https://cytoscape.org/) software. The degree values of nodes were calculated by Network Analysis. Furthermore, the interaction relationship between the active components of Jingshui Tinling Decoction (JSTLD) and MPE related targets was elucidated.

#### 2.4. Establishment of protein interaction (PPI) network

Using STRING database (https: To introduce the potential target of Jinshui-Tinling decoction (JSTLD) in the treatment of MPE, set up the species type "homo sapiens", construct the protein interaction network (PPI), and obtain the protein interaction information tsv file of the target gene. The key target genes of Jinshui Tinling decoction (JSTLD) in the treatment of MPE were obtained by count descending order.

#### 2.5. GO function and KEGG pathway enrichment analysis

The key nodes were converted into gene ids by using the data package "org.Hs.eg.db" in R language, and then imported into R 4.0.4 software. The threshold was set P < 0.01. "BiocManager" and other software packages were used to analyze the GO function and KEGG enrichment of key nodes, and the biological significance and possible mechanism of MPE treatment were analyzed.

#### 2.6. Molecular docking

The core compound of JSTLD was docked with protein, and the molecular structure of the core compound of JSTLD was downloaded from TCMSP database. The small molecules were hydrogenated and ROOT was added by AutoDock software. The RCSB (https://www.rcsb.org/) database was used to download the protein structure, and AutoDock software was used to remove water molecules and hydrogenate the protein, etc. AutoDock vina software was used to semi-flexible docking of compound molecules and proteins. Pymol software was used to render the images and output the results.

#### **3. Results and analysis**

#### 3.1. Active ingredients and potential targets of JSTLD

TCMSP database by screening conditions (OB  $\geq$  30%, DL $\geq$  0.18), and 153 active ingredients were obtained, as shown in Table 1. There were 8,463 targets. Among them, SD, SZY and ZX share sitosterol as the active ingredient. The common active ingredient was stigmasterol in SD, SY, SZY, DG, GQZ and SR. HJS and TLZ have nemorosa kaempferol as active ingredient. GQZ and TLZ have common active ingredient quercetin. The active ingredient of DG, GQZ, TLZ, SZY, HJS and SR is  $\beta$ -sitosterol. After deleting the duplicate data, 128 active ingredients of JSTLD were obtained.

| TCM | Mol ID    | Molecule Name                                       | OB (%)      | DL      |
|-----|-----------|-----------------------------------------------------|-------------|---------|
| SD  | MOL000359 | sitosterol                                          | 36.91390583 | 0.7512  |
|     | MOL000449 | Stigmasterol                                        | 43.82985158 | 0.75665 |
| SY  | MOL001559 | piperlonguminine                                    | 30.71142726 | 0.1802  |
|     | MOL001736 | (-)-taxifolin                                       | 60.50621692 | 0.27342 |
|     | MOL000310 | Denudatin B                                         | 61.47237606 | 0.37838 |
|     | MOL000322 | Kadsurenone                                         | 54.72301284 | 0.37829 |
|     | MOL005429 | hancinol                                            | 64.0132681  | 0.37314 |
|     | MOL005430 | hancinone C                                         | 59.04593444 | 0.38965 |
|     | MOL005435 | 24-Methylcholest-5-enyl-3belta-O-glucopyranoside_qt | 37.57681789 | 0.71653 |
|     | MOL005438 | campesterol                                         | 37.57681789 | 0.71488 |
|     | MOL005440 | Isofucosterol                                       | 43.77639556 | 0.7576  |
|     | MOL000449 | Stigmasterol                                        | 43.82985158 | 0.75665 |
|     | MOL005458 | Dioscoreside C_qt                                   | 36.38228738 | 0.87051 |
|     | MOL000546 | diosgenin                                           | 80.87792491 | 0.80979 |

Table 1: Active ingredients of Jingshui Tinling Decoction

| MOL005461     | Doradexanthin                                                    | 38.15575048 | 0.53662 |
|---------------|------------------------------------------------------------------|-------------|---------|
| MOL005463     | Methylcimicifugoside_qt                                          | 31.69348525 | 0.23655 |
| MOL005465     | AIDS180907                                                       | 45.32835933 | 0.77301 |
| MOL000953     | CLR                                                              | 37.87389754 | 0.67677 |
| SZY MOL001494 | Mandenol                                                         | 41.99620045 | 0.19321 |
| MOL001495     | Ethyl linolenate                                                 | 46.10096327 | 0.19716 |
| MOL001771     | poriferast-5-en-3beta-ol                                         | 36.91390583 | 0.75034 |
| MOL002879     | Diop                                                             | 43.59332547 | 0.39247 |
| MOL002883     | Ethyl oleate (NF)                                                | 32.39738821 | 0.19061 |
| MOL003137     | Leucanthoside                                                    | 32.11589283 | 0.78146 |
| MOL000358     | beta-sitosterol                                                  | 36.91390583 | 0.75123 |
| MOL000359     | sitosterol                                                       | 36.91390583 | 0.7512  |
| MOL000449     | Stigmasterol                                                     | 43.82985158 | 0.75665 |
| MOL005360     | malkangunin                                                      | 57.71384384 | 0.62642 |
| MOL005481     | 2,6,10,14,18-pentamethylicosa-2,6,10,14,18-pentaene              | 33.4041173  | 0.24028 |
| MOL005486     | 3,4-Dehydrolycopen-16-al                                         | 46.64445252 | 0.4906  |
| MOL005489     | 3,6-Digalloylglucose                                             | 31.41521237 | 0.66343 |
| MOL005503     | Cornudentanone                                                   | 39.6634055  | 0.327   |
| MOL005530     | Hydroxygenkwanin                                                 | 36.46699689 | 0.27206 |
| MOL005531     | Telocinobufagin                                                  | 69.99386894 | 0.79297 |
| MOL008457     | Tetrahydroalstonine                                              | 32.41977527 | 0.81311 |
| MOL000554     | gallic acid-3-O-(6'-O-galloyl)-glucoside                         | 30.25032187 | 0.6746  |
| MOL005552     | gemin D                                                          | 68.8303535  | 0.56075 |
| MOL005557     | lanosta-8.24-dien-3-ol.3-acetate                                 | 44.29553995 | 0.82425 |
|               | (2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-dihvdroxy-              |             |         |
| FL MOL000273  | 4.4,10,13,14-pentamethyl-2,3,5,6,12,15,16,17-octahydro-1H-       | 30.93214234 | 0.81281 |
|               | cyclopenta [a]phenanthren-17-yl]-6-methylhept-5-enoic acid       |             |         |
| MOL000275     | trametenolic acid                                                | 38.71150002 | 0.80199 |
| MOL000276     | 7,9(11)-dehydropachymic acid                                     | 35.105891   | 0.81091 |
| MOL000279     | Cerevisterol                                                     | 37.96382825 | 0.77061 |
|               | (2R)-2-[(3S,5R,10S,13R,14R,16R,17R)-3,16-dihydroxy-              |             |         |
| MOL000280     | 4,4,10,13,14-pentamethyl-2,3,5,6,12,15,16,17-octahydro-1H-       | 31.07205665 | 0.81528 |
|               | cyclopenta [a]phenanthren-17-yl]-5-isopropyl-hex-5-enoic acid    |             |         |
| MOL000282     | ergosta-7,22E-dien-3beta-ol                                      | 43.50708637 | 0.71939 |
| MOL000283     | Ergosterol peroxide                                              | 40.36268048 | 0.81255 |
|               | (2R)-2-[(5R,10S,13R,14R,16R,17R)-16-hydroxy-3-keto-              |             |         |
| MOI 000285    | 4,4,10,13,14-pentamethyl-1,2,5,6,12,15,16,17-                    | 20 255150   | 0.82014 |
| WOL000283     | octahydrocyclopenta[a]phenanthren-17-yl]-5-isopropyl-hex-5-enoic | 36.233136   | 0.62014 |
|               | acid                                                             |             |         |
| MOL000287     | 3beta-Hydroxy-24-methylene-8-lanostene-21-oic acid               | 38.69991401 | 0.8095  |
| MOL000289     | pachymic acid                                                    | 33.62791957 | 0.81076 |
| MOL000290     | Poricoic acid A                                                  | 30.60694619 | 0.76152 |
| MOL000291     | Poricoic acid B                                                  | 30.52460129 | 0.7463  |
| MOL000292     | poricoic acid C                                                  | 38.15135789 | 0.74643 |
| MOL000296     | hederagenin                                                      | 36.91390583 | 0.75072 |
| MOL000300     | dehydroeburicoic acid                                            | 44.17229867 | 0.83458 |
| ZL MOL000279  | Cerevisterol                                                     | 37.96382825 | 0.77061 |
| MOL000282     | ergosta-7,22E-dien-3beta-ol                                      | 43.50708637 | 0.71939 |
| MOL000796     | (22e,24r)-ergosta-6-en-3beta,5alpha,6beta-triol                  | 30.19604056 | 0.76433 |
| MOL000797     | (22e,24r)-ergosta-7,22-dien-3-one                                | 44.87660559 | 0.72485 |
| MOL000798     | ergosta-7,22-diene-3 -ol                                         | 43.50708637 | 0.71913 |
| MOL000801     | 5alpha,8alpha-epidioxy-(22e,24r)-ergosta-6,22-dien-3beta-ol      | 44.39151838 | 0.82192 |
| MOL011169     | Peroxyergosterol                                                 | 44.39151838 | 0.82    |
| MOL000816     | ergosta-7,22-dien-3-one                                          | 44.87660559 | 0.72456 |
| MOL000817     | ergosta-5,7,22-trien-3-ol                                        | 46.18489919 | 0.72348 |
| MOL000820     | polyporusterone E                                                | 45.71302909 | 0.85389 |
| MOL000822     | polyporusterone G                                                | 33.43027891 | 0.81312 |
| ZX MOL000359  | sitosterol                                                       | 36.91390583 | 0.7512  |
| MOL000830     | Alisol B                                                         | 34.47307308 | 0.81706 |

|       | MOL000831  | Alisol B monoacetate                                                                                                                                                                                     | 35.57623621  | 0.80629 |
|-------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------|
|       | MOL000832  | alisol, b,23-acetate                                                                                                                                                                                     | 32.51621601  | 0.81841 |
|       | MOL000849  | 16s -methoxyalisol B monoacetate                                                                                                                                                                         | 32.42724106  | 0.7679  |
|       | MOL000853  | alisol B                                                                                                                                                                                                 | 36.76038067  | 0.81993 |
|       | MOL000854  | alisol C                                                                                                                                                                                                 | 32.70016921  | 0.81507 |
|       | MOL000856  | alisol C monoacetate                                                                                                                                                                                     | 33.06358947  | 0.82763 |
|       | MOL002464  | 1-Monolinolein                                                                                                                                                                                           | 37.17662836  | 0.30249 |
|       | MOL000862  | [(1S,3R)-1-[(2R)-3,3-dimethyloxiran-2-yl]-3-<br>[(5R,8S,9S,10S,11S,14R)-11-hydroxy-4,4,8,10,14-pentamethyl-3-<br>oxo-1,2,5,6,7,9,11,12,15,16-decahydrocyclopenta [a]phenanthren-<br>17-vllbutyl] acetate | 35.57623621  | 0.80765 |
| HIS   | MOL001506  | Supraene                                                                                                                                                                                                 | 33 54594264  | 0 42161 |
| 110.5 | MOL001689  | acacetin                                                                                                                                                                                                 | 34.97357273  | 0.24082 |
|       | MOL001790  | Linarin                                                                                                                                                                                                  | 39.84373106  | 0.70925 |
|       | MOL002879  | Diop                                                                                                                                                                                                     | 43.59332547  | 0.39247 |
|       | MOL002881  | Diosmetin                                                                                                                                                                                                | 31,13794879  | 0.27442 |
|       | MOL002882  | [(2R)-2.3-dihydroxypropyl] (Z)-octadec-9-enoate                                                                                                                                                          | 34,13107758  | 0.29824 |
|       | MOL002883  | Ethyl oleate (NF)                                                                                                                                                                                        | 32,39738821  | 0.19061 |
|       | MOL000296  | hederagenin                                                                                                                                                                                              | 36 91390583  | 0.75072 |
|       | MOL 000358 | heta-sitosterol                                                                                                                                                                                          | 36 91390583  | 0.75123 |
|       | MOL 000422 | kaempferol                                                                                                                                                                                               | 41 88224954  | 0.73123 |
| TI Z  | MOL000422  | 11 14-eicosadienoic acid                                                                                                                                                                                 | 39 99355408  | 0.24000 |
| ILZ   | MOL 000296 | hederagenin                                                                                                                                                                                              | 36.01300583  | 0.20044 |
|       | MOL 000250 | isorhampetin                                                                                                                                                                                             | 49 60437705  | 0.73072 |
|       | MOL 000354 | beta sitosterol                                                                                                                                                                                          | 49.00437703  | 0.300   |
|       | MOL 003005 |                                                                                                                                                                                                          | 70 64064761  | 0.73123 |
|       | MOL 003905 | K STROPHANTHOSIDE at                                                                                                                                                                                     | 70.04904701  | 0.22102 |
|       | MOL 003900 | K-SIKOPHANTHOSIDE_qt                                                                                                                                                                                     | 65 45 45 720 | 0.77307 |
|       | MOL003907  | erysinioside                                                                                                                                                                                             | 00.04245104  | 0.22670 |
|       | MOL003908  |                                                                                                                                                                                                          | 99.94243194  | 0.7739  |
|       | MOL003909  | Dihamalinalania aaid                                                                                                                                                                                     | 44.24000970  | 0.24322 |
|       | MOL003927  |                                                                                                                                                                                                          | 44.11029883  | 0.20398 |
|       | MOL000422  | kaempieroi                                                                                                                                                                                               | 41.88224934  | 0.24000 |
| C07   | MOL00098   | Quercetin<br>Situatoral alaba1                                                                                                                                                                           | 40.43334812  | 0.27525 |
| GQZ   | MOL 002578 |                                                                                                                                                                                                          | 45.28127042  | 0.78002 |
|       | MOL003378  | Verdenel                                                                                                                                                                                                 | 38.08303900  | 0.78093 |
|       | MOL001494  |                                                                                                                                                                                                          | 41.99620043  | 0.19521 |
|       | MOL001493  |                                                                                                                                                                                                          | 40.10090327  | 0.19/10 |
|       | MOL001979  | LAN                                                                                                                                                                                                      | 42.11918897  | 0.74787 |
|       | MOL000449  | Stigmasterol                                                                                                                                                                                             | 43.82985158  | 0.75100 |
|       | MOL000358  | Deta-sitosterol                                                                                                                                                                                          | 36.91390583  | 0.75123 |
|       | MOL005400  | atropine                                                                                                                                                                                                 | 43.97038178  | 0.19528 |
|       | MOL005438  | campesterol                                                                                                                                                                                              | 37.37081789  | 0.75018 |
|       | MOL006209  | cyanin<br>24 methodi demologia                                                                                                                                                                           | 47.42092269  | 0.75918 |
|       | MOL007449  | 24-methylidenelophenol                                                                                                                                                                                   | 44.19204343  | 0.7535  |
|       | MOL0081/3  |                                                                                                                                                                                                          | 50.71390383  | 0.73310 |
|       | MOL008400  | glycitein                                                                                                                                                                                                | 30.47891366  | 0.23826 |
|       | MOL010234  | delta-Carotene                                                                                                                                                                                           | 31.80094312  | 0.54639 |
|       | MOL000953  |                                                                                                                                                                                                          | 31.8/389/54  | 0.0/0// |
|       | MOL009604  | 14b-pregnane                                                                                                                                                                                             | 34.77923299  | 0.33723 |
|       | MOL009612  | (24K)-4aipna-Metnyl-24-etnylcholesta-/,25-dien-3beta-ylacetate                                                                                                                                           | 40.35/49925  | 0.8398  |
|       | MOL009015  | 24-ivietnyienecycioartan-speta,21-diol                                                                                                                                                                   | 27.00454086  | 0.7511  |
|       | MOL009617  | 24-etnyicnoiest-22-enoi                                                                                                                                                                                  | 37.09454086  | 0./511  |
|       | MOL009618  | 24-ethylcholesta-5,22-dienol                                                                                                                                                                             | 43.82985158  | 0.75636 |
|       | MOL009620  | 24-methyl-31-norlanost-9(11)-enol                                                                                                                                                                        | 37.9996853   | 0.75092 |
|       | MOL009621  | 24-methylenelanost-8-enol                                                                                                                                                                                | 42.36819868  | 0.76769 |
|       | MOL009622  | Fucosterol                                                                                                                                                                                               | 43.77639556  | 0.75668 |
|       | MOL009631  | 31-Norcyclolaudenol                                                                                                                                                                                      | 38.68209614  | 0.81391 |
|       | MOL009633  | 31-norlanost-9(11)-enol                                                                                                                                                                                  | 38.35394137  | 0.7249  |

|                               | MOL009634  | 31-norlanosterol                                                                                                          | 42.20462055 | 0.73012 |
|-------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------|-------------|---------|
| MOL009635                     |            | 4.24-methyllophenol                                                                                                       | 37.83467433 | 0.74999 |
|                               | MOL009639  | Lophenol                                                                                                                  | 38.12940252 | 0.714   |
|                               | MOI 009640 | 4alpha 14alpha 24-trimethylcholesta-8 24-dienol                                                                           | 38 90988973 | 0.75772 |
|                               | MOL 009641 | 4alpha 24-dimethylcholesta 7 24-dienol                                                                                    | 42 65304098 | 0.75297 |
|                               | MOL 009642 | 4alpha-methyl-24-ethylcholesta-7 24-dienol                                                                                | 42 29509453 | 0.78304 |
|                               | MOL009644  | 6-Eluoroindole-7-Dehydrocholesterol                                                                                       | 43 72602513 | 0.70304 |
|                               | MOL009646  | 7 0 Methylluteolin 6 C beta glucoside at                                                                                  | 40.77368843 | 0.72224 |
|                               | MOL009040  | Atropine                                                                                                                  | 40.77308843 | 0.30497 |
|                               | MOL009651  | Cruntovanthin monoanovida                                                                                                 | 46.05271027 | 0.17277 |
|                               | MOL 000652 |                                                                                                                           | 40.93371937 | 0.30103 |
|                               | MOL 000656 | (E.E.) 1 athyl acted and 2.12 diaposta                                                                                    | 39.72047210 | 0.19440 |
|                               | MOL009030  | methyl (1P. 4oS 7P. 7oS) 4o 7 dihydroxy, 7 methyl 1                                                                       | 41.99020043 | 0.19304 |
|                               | MOL009660  | [(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-<br>yl]oxy-1,5,6,7a-tetrahydrocyclopenta[d]pyran-4-carboxylate | 39.42847682 | 0.46558 |
|                               | MOL009662  | Lantadene A                                                                                                               | 38.67942417 | 0.57405 |
|                               | MOL009664  | Physalin A                                                                                                                | 91.70647491 | 0.27207 |
|                               | MOL009665  | Physcion-8-O-beta-D-gentiobioside                                                                                         | 43.90358656 | 0.62426 |
|                               | MOL009677  | lanost-8-en-3beta-ol                                                                                                      | 34.22630373 | 0.74036 |
|                               | MOL009678  | lanost-8-enol                                                                                                             | 34.22630373 | 0.74167 |
|                               | MOL009681  | Obtusifoliol                                                                                                              | 42.55200222 | 0.7565  |
|                               | MOL000098  | quercetin                                                                                                                 | 46.43334812 | 0.27525 |
| SR                            | MOL001755  | 24-Ethylcholest-4-en-3-one                                                                                                | 36.08361164 | 0.75703 |
|                               | MOL001771  | poriferast-5-en-3beta-ol                                                                                                  | 36.91390583 | 0.75034 |
|                               | MOL001973  | Sitosteryl acetate                                                                                                        | 40.38964165 | 0.85102 |
|                               | MOL000358  | beta-sitosterol                                                                                                           | 36.91390583 | 0.75123 |
|                               | MOL003975  | icosa-11,14,17-trienoic acid methyl ester                                                                                 | 44.81361719 | 0.23355 |
|                               | MOL000449  | Stigmasterol                                                                                                              | 43.82985158 | 0.75665 |
|                               | MOL007180  | vitamin-e                                                                                                                 | 32.28642803 | 0.69563 |
|                               | MOL007514  | methyl icosa-11.14-dienoate                                                                                               | 39.6670588  | 0.22908 |
|                               |            | (5S.8S.9S.10R.13R.14S.17R)-17-[(1R.4R)-4-ethyl-1.5-                                                                       |             |         |
|                               | MOL007535  | dimethylhexyl]-10,13-dimethyl-2,4,5,7,8,9,11,12,14,15,16,17-<br>dodecahydro-1H-cyclopenta[a]phenanthrene-3,6-dione        | 33.1153996  | 0.78802 |
|                               | MOL007536  | Stigmasta-5,22-dien-3-beta-yl acetate                                                                                     | 46.44190225 | 0.85691 |
| DG                            | MOL000358  | beta-sitosterol                                                                                                           | 36.91390583 | 0.75123 |
|                               | MOL000449  | Stigmasterol                                                                                                              | 43.82985158 | 0.75665 |
| SY, GQZ                       | MOL005438  | campesterol                                                                                                               | 37.57681789 | 0.71488 |
| SY, GQZ                       | MOL000953  | ĈLR                                                                                                                       | 37.87389754 | 0.67677 |
| SZY, HJS                      | MOL002883  | Ethyl oleate (NF)                                                                                                         | 32.39738821 | 0.19061 |
| SZY, HJS                      | MOL002881  | Diosmetin                                                                                                                 | 31.13794879 | 0.27442 |
| SZY, SR                       | MOL001771  | poriferast-5-en-3beta-ol                                                                                                  | 36.91390583 | 0.75034 |
| SZY, GQZ                      | MOL001495  | Ethyl linolenate                                                                                                          | 46.10096327 | 0.19716 |
| SZY, GQZ                      | MOL001494  | Mandenol                                                                                                                  | 41.99620045 | 0.19321 |
| HJS, TLZ                      | MOL000422  | kaempferol                                                                                                                | 41.88224954 | 0.24066 |
| FL, ZL                        | MOL000282  | ergosta-7,22E-dien-3beta-ol                                                                                               | 43.50708637 | 0.71939 |
| FL, ZL                        | MOL000279  | Cerevisterol                                                                                                              | 37.96382825 | 0.77061 |
| GQZ, TLZ                      | MOL000098  | quercetin                                                                                                                 | 46.43334812 | 0.27525 |
| SD, SZY, ZX                   | MOL000359  | sitosterol                                                                                                                | 36.91390583 | 0.7512  |
| FL, HJS, TLZ                  | MOL000296  | hederagenin                                                                                                               | 36.91390583 | 0.75072 |
| SD, SY, SZY,<br>DG, GQZ, SR   | MOL000449  | Stigmasterol                                                                                                              | 43.82985158 | 0.75665 |
| DG, GQZ, TLZ,<br>SZY, HJS, SR | MOL000358  | beta-sitosterol                                                                                                           | 36.91390583 | 0.75123 |

## **3.2. Targets of JSTLD components and MPE disease targets**

JSTLD was retrieved through TCMSP database, and 195 target sites were obtained after all component targets were combined and removed. 1539 relevant target sites of "Malignant pleural

effusion" were retrieved using GeneCards database and OMIM database, and the intersections were obtained. 106 common targets were obtained, as shown in Figure 1. The potential target genes of Jinshui Tinling decoction in the treatment of MPE are shown in Table 2.



Figure 1: Venn diagram of active component targets and MPE related targets in Jingshui Tinling Decoction

| The name of the gene |       |        |        |          |        |         |
|----------------------|-------|--------|--------|----------|--------|---------|
| PGR                  | PLAU  | TOP2A  | TP53   | ICAM1    | ALOX5  | RASSF1  |
| PTGS1                | LTA4H | DPP4   | NFKBIA | IL1B     | IL1A   | E2F1    |
| PTGS2                | MAOB  | F2     | TOP1   | CCL2     | MPO    | ACP3    |
| HSP90AA1             | LYZ   | MMP3   | SOD1   | SELE     | ABCG2  | CTSD    |
| ADRB2                | DRD2  | RELA   | MMP1   | VCAM1    | NFE2L2 | IGFBP3  |
| BCL2                 | ESR1  | EGFR   | HIF1A  | CXCL8    | PARP1  | IGF2    |
| BAX                  | PPARG | AKT1   | STAT1  | PRKCB    | COL3A1 | CD40LG  |
| CASP9                | GSK3B | CCND1  | CDK1   | BIRC5    | CXCL11 | IRF1    |
| JUN                  | CDK2  | BCL2L1 | HSPA5  | HSPB1    | CXCL2  | ERBB3   |
| CASP3                | CHEK1 | FOS    | ERBB2  | IL2RA    | CHEK2  | RASA1   |
| CASP8                | PRSS1 | CDKN1A | HMOX1  | NR1I2    | CLDN4  | GSTM1   |
| PRKCA                | CCNA2 | MMP2   | CYP3A4 | PLAT     | PPARA  | FASLG   |
| PON1                 | NOS2  | MMP9   | CAV1   | THBD     | PPARD  | CYP19A1 |
| NR3C2                | MMP8  | MAPK1  | MYC    | SERPINE1 | CXCL10 | SLPI    |
| RXRA                 | NR3C1 | IL6R   | F3     | IFNG     | SPP1   | ABCC2   |
| MTOR                 |       |        |        |          |        |         |

Table 2: Potential targets of Jinshui Tinling decoction in the treatment of MPE

## **3.3. "Drug-ingredient-target" network**

Cytoscape 3.8.2 software was used to draw the "drug-component-target" network diagram of Jinshui Tinling decoction (JSTLD) in the treatment of MPE, as shown in Figure 2. The network consists of 201 nodes. The top 4 active ingredients were quercetin,  $\beta$ -sitosterol, kaempferol and stigmasterol according to the node parameter degree values, which were 188, 78, 66 and 54, respectively.



Figure 2: Drug-component-target network diagram of Jinshui Tinling decoction in the treatment of MPE Note: ovals represent drugs; The rectangle represents the active ingredient; The hexagon represents the target

## **3.4. PPI network**

With the help of STRING database, the species "homo sapiens" was set for 106 intersection targets to draw PPI network, as shown in Figure 3. The top 30 key targets were analyzed in descending order of count value. As shown in figure 4. The results showed that AKT1, TP53, IL1B, CASP3, JUN, EGFR, MMP9, MYC, HIF1A, CXCL8 and other genes may be the key target genes of JSTLD in the treatment of MPE.



Figure 3: PPI network diagram of Jinshui Tinling decoction for MPE targets



Figure 4: Key Targets (Top 30)

## **3.5.** GO function and KEGG pathway enrichment analysis



Figure 5: GO functional analysis results (Top 10)

GO functional analysis results showed that Biological Processes (BP) included 4,367 data, mainly focusing on the reaction to lipopolysaccharide, the reaction to bacterial-derived molecules, the reaction of cells to oxidative stress and other biological processes. CC, Cellular Components, a total of 399 data, mainly concentrated in membrane raft, membrane microzone, membrane zone, etc. A

total of 140 Molecular Functions were collected, mainly focusing on DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, ubiquitin like protein ligase binding, etc. As shown in figure 5. KEGG pathway enrichment analysis results showed 233 signaling pathways including cancer pathway, HIF-1 signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway, etc. P value represents the degree of enrichment, and the most significant degree of enrichment is cancer pathway, as shown in Figure 6.



Figure 6: KEGG pathway enrichment analysis results (Top 20)

## **3.6. Molecular docking results**

The top 10 targets with PPI degree value and the top 4 pharmacodynamic components with "drugingredient-target" network graph degree value were respectively used to establish molecular docking models, and the docking scores were shown in Table 3. Autodock vina 1.1.2 software was used to select key targets of protein interaction and their compounds for molecular docking. The results of molecular docking showed that the lowest binding energy of the top 4 active components and the top 10 key target receptors with the degree of PPI were less than -5 kcal/mol, and they were closely bound with strong binding activity, as shown in Figure 7.

| Tuese of histocental doesning information convolution help compounds and core target proteins |              |            |           |                 |  |  |
|-----------------------------------------------------------------------------------------------|--------------|------------|-----------|-----------------|--|--|
| Target                                                                                        | Stigmasterol | kaempferol | quercetin | beta-sitosterol |  |  |
| AKT1                                                                                          | -9.3         | -7         | -9.2      | -9.8*           |  |  |
| TD53                                                                                          | 8 /*         | 75         | 63        | 83              |  |  |

| Table 3. Molecular docking | information between ke | v compounds and core | target proteins |
|----------------------------|------------------------|----------------------|-----------------|
| Table 5. Molecular uocking | information between Ke | y compounds and core | larget proteins |

| Target | Stigmasterol | kaempferol | quercetin | beta-sitosterol |
|--------|--------------|------------|-----------|-----------------|
| AKT1   | -9.3         | -7         | -9.2      | -9.8*           |
| TP53   | -8.4*        | -7.5       | -6.3      | -8.3            |
| IL1B   | -6.8         | -6.3       | -6.1      | -6.5            |
| CASP3  | -8.2*        | -7.5       | -7.5      | -7.3            |
| JUN    | -8.4         | -9*        | -8.7      | -7.8            |
| EGFR   | -8.3*        | -7.6       | -7.7      | -7.8            |
| MMP9   | -8.5*        | -7         | -7.1      | -7.7            |
| MYC    | -8.8*        | -7.4       | -7        | -8.1            |
| HIF1A  | -6.2         | -6.6       | -6.2      | -6.7*           |
| CXCL8  | -6.8*        | -5.6       | -5.1      | -6.5            |



A: beta-sitosterol&AKT1; B: Stigmasterol&TP53; C: Stigmasterol&CASP3

Figure 7: Docking pattern diagram of therapeutic components and target of Jinshui Tinling decoction

#### 4. Conclusions and Discussion

In this study, quercetin,  $\beta$ -sitosterol, kaempferol and stigmasterol were selected as the main active ingredients of JSTLD. Relevant studies have shown that quercetin and other EGFR small molecule inhibitors [8-9]. Studies have shown that silver nanoparticles mediated by  $\beta$ -sitosterol in human colon cancer HT-29 cells exhibit cytotoxic effects, which can accelerate the apoptosis of colon cancer cells and have various pharmacological effects such as cancer inhibition, anti-inflammatory and anti-apoptosis [10-12]. Kaempferol is a flavonoid extracted from rhizoma kaempferiae kaempferiae. It can destroy the nucleus of cancer cells by synthesizing K-AuNCs, induce apoptosis and autophagy, inhibit the proliferation of A549 cells and treat lung cancer. Studies have shown that kaempferol has anti-cancer, antibacterial, anti-inflammatory and other effects [13-17]. Stigmasterol can reduce the transcription of tumor necrosis factor- $\alpha$ , destroy tumor angiogenesis, inhibit the growth of cholangiocarcinoma, and reduce the proliferation and migration of gastric cancer cells by inhibiting JAK/STAT signaling pathway [18].

The results of PPI network analysis showed that AKT1, TP53, IL1B, CASP3, JUN and EGFR were the core targets of JSTLD in the treatment of MPE. In the process of tumor occurrence and development, AKT1 is a key factor for PI3K to inhibit apoptosis and plays an important role through PI3K/Akt/mTOR signaling pathway [19-20]. Studies have found that TP53 mutation promotes the proliferation, migration and invasion of tumor cells [21]. Il-1 $\beta$  plays an important role in immune defense and immune-mediated diseases [22]. Tumorigenesis is related to the release of inflammatory mediators, pyroptosis, multiple signaling pathways and resistance to chemotherapy drugs [23]. In the process of gastric cancer chemotherapy, the cell mortality of SGC-7901 and MKN-45 was significantly increased after fluorouracil treatment, indicating that pyroptosis of gastric cancer cells

is caused by caspase-3-dependent apoptosis induced by chemotherapy drugs [24]. These findings suggest that caspase-3 activation can induce necrosis mediated by cleavage of the Gasdermin E family, providing new insights into tumor chemotherapy [25-26]. Cellular inflammatory response is closely related to the activation of JNK/c-Jun signaling pathway [27]. The mutation of upstream EGFR and PIK3CA often leads to the mutation and overactivation of AKT, which promotes the further deterioration of lung cancer [28].

The main pathogenesis of MPE is the increase of pleural permeability caused by pleural tumors (malignant tumor metastasis, mesothelioma) and the obstruction of parietal pleural lymphatic drainage caused by lymphatic obstruction of cancer. As the most important signaling pathway in the treatment of MPE by JSTLD, cancer pathway may play an important role in the treatment of MPE.

In summary, the results of this study showed that quercetin,  $\beta$ -sitosterol, kaempferol and stigmasterol were the key components of JSTLD. Core target proteins AKT1, TP53, IL1B, CASP3, JUN, EGFR and other targets; Cancer pathway is the most important signal pathway in the treatment of MPE with JSTLD. The minimum binding energy of all the molecular docking results was less than -5.0 kJ mol-1, indicating good docking, which further indicated the rationality of JSTLD in the treatment of MPE. JSTLD plays an important potential role in inhibiting the proliferation of cancer cells, which has certain guiding significance for further research. However, this study also has some shortcomings. Experimental verification of active ingredients, core targets and key signaling pathways is needed in the future to verify the mechanism of action of JSTLD in the treatment of MPE.

#### Acknowledgements

Natural Science Foundation of Shaanxi Province (2021JM-565): Jinshui-Tingling Decoction inhibits the formation and mechanism of malignant pleural effusion in mice; Shaanxi University of Traditional Chinese Medicine Postgraduate Academic Exchange Program (XSJL005): To investigate the mechanism of Jinshui-Tingling decoction in the treatment of malignant pleural effusion of non-small cell lung cancer based on network pharmacology and in vitro Western Blot experiments

**The First Author:** Baogang Yang, (1990-), male, master student of Shaanxi University of Traditional Chinese Medicine. Research direction: Integrated traditional Chinese and Western medicine clinical tumor. Email: youaremysmile153@163.com

**Second author and corresponding autho:** Chenguang Yang\*, (1971-), male, doctoral candidate, chief physician, master tutor of Shaanxi University of Traditional Chinese Medicine, Shaanxi Hospital of Traditional Chinese Medicine. Research direction: Integrated traditional Chinese and Western medicine clinical tumor. Email: 470999091@qq.com

**Third author:** Jiao Gou, (1988- ), female, Shaanxi Provincial Hospital of Traditional Chinese Medicine, postgraduate, associate chief physician. Research direction: Integrated traditional Chinese and Western medicine clinical tumor. Email: sunnyxjdt@qq.com

#### References

[6] Yang C G. A kind of Chinese medicine composition used in the treatment of malignant pleural effusion [P]. China

<sup>[1]</sup> Fitzgerald Db, Koegelenberg C, Yasufuku K, Et al. Surgical and non-surgical management of malignant pleural effusions [J]. Expert Rev Respir Med, 2018, 12(1): 15 to 26.

<sup>[2]</sup> Feller-Kopman DJ, Reddy CB, DeCamp MM, et al. Management of Malignant Pleural Effusions. An Official ATS/STS/STR Clinical Practice Guideline. Am J Respir Crit Care Med. 2018; 198 (7): 839-849.

<sup>[3]</sup> Bibby AC, Dorn P, Psallidas I, et al. ERS/EACTS statement on the management of malignant pleural effusions. Eur Respir J. 2018; 52(1): 1800349. Published 2018 Jul 27.

<sup>[4]</sup> Recuero Diaz JL, Figueroa Almanzar S, Galvez Munoz C, et al. Recommendations of the Spanish Society of Thoracic Surgery for the management of malignant pleural effusion. Cir Esp (Engl Ed). 2022 Jun 3: S2173-5077(22)00160-0.

<sup>[5]</sup> Yang Chenguang, Wang Songhai, Xu Peng. Treatment of malignant pleural effusion from the perspective of water and fire in mingmen [J]. Shaanxi journal of traditional Chinese medicine, 2019, 40(2): 247-249.

Invention Patent, CN111939239B. 2022-02-01.

[7] Kang Chao, Yang Baogang, Yang Chenguang, et al. A retrospective analysis of Mingmen theory in the treatment of malignant pleural effusion [J]. Clinical Medical Research & Practice. 2022(13): 94-97.

[8] Yu Q, Fan L, Duan Z. Five individual polyphenols as tyrosi- nase inhibitors: inhibitory activity, synergistic effect, action mechanism and molecular docking [J]. Food Chem, 2019, 297: 124910.

[9] Salaverry L S, Parrado A C, Mangone F M, et al. In vitro anti-inflammatory properties of Smilax campestris desalination extract in human macrophages. characterization of full its flavo- noid profile [J]. J Ethnopharmacol, 2020, 247: 112-282.

[10] Shathviha PC, Ezhilarasan D, Rajeshkumar S, et al.  $\beta$ -sitosterol mediated silver nanoparticles induce cyto- toxicity in human colon cancer HT-29 cells [J]. Avi- cenna J Med Biotechnol, 2021,13 (1): 42-46.

[11] Luna-Herrera C, Intranigral administration of  $\beta$ -sitosterol- $\beta$ -D-glucoside elicits neurotoxic A1, MARTINEZ DAVILA LA, SOTOROJASLO, et al. Intranigral administration of  $\beta$ -Sitosterol- $\beta$ -D-glucoside Elicits Neurotoxic A1 astrocyte reactivity and chronic neuroinflammation in the rat substantia nigra [J]. J Immunol Res, 2020 (712): 1-19.

[12] Chen Y, Chen J, Sun K, et al. To Explore the Mechanism of Dahuang Fuzi Xixin Decoction in Treatment of Renal Interstitial Fibrosis Based on Network Pharmacology[J]. Journal of Liaoning University of Traditional Chinese Medicine, 2020.

[13] Wang H J, Chen L Y, Zhang X Y, Et Al. Kaempferol protects mice from d-GalN/LPS-induced acute liver failure by regulating the ER stress-Grp78-CHOP signaling pathway [J]. Biomed Pharmacoth, 2019, 111(12): 468-475.

[14] Han X, Liu C F, Gao N, et al. Kaempferol suppresses proliferation but increases apoptosis and autophagy by upregulating microRNA-340 in human lung cancer cells [J]. Biomed Pharmacoth, 2018, 108: 809-816.

[15] Zhong X M, Zhang L, Li Y M, Et Al., Kaempferol alleviates ox - LDL - induced apoptosis by the up - regulation of miR - a - 5 p 26 via inhibiting TLR4 / the nf-kappa B pathway in human endothelial cells [J]. Biomed Pharmacoth, 2018, 108(17): 1783-1789.

[16] Govindaraju Saravanan, Roshini Arivazhagan, Lee Min-Ho, et al. Conjugated gold nanoclusters enabled efficient for anticancer Ther-apeutics to A549 lung cancer cell [J]. International journal of nanomedi-cine, 2019, 14: 5147-5157. [17] Xue Han, Chun-Fang Liu, Na Gao, et al. Kaempferol suppresses proliff-eration but, Macrophages and autophagy by up-regulating microRNA-340 in human lung Cancer cells [J]. Journal of Biomedicine & amp; Pharmacotherapy, 2018, 108: 809-816.

[18] Wang Shuai, Sun Yu, Li Chunmei, Lu Qun. Research progress of stigmasterol [J]. China Pharmaceutical, 2019, 28(23): 96-98.

[19] Zughaibi Ta, Suhail M, Tarique M, Et al. Targeting PI3K/Akt/mTOR pathway by different flavonoids: [J]. Int J Mol Sci, 2019, 22 (22): 12455. (In Chinese)

[20] Sun E J, Wankell M, Palamuthusingam P, et al. Tar-geting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma [J]. Biomedicines, 2021, 9 (11): 1639.

[21] Yan Jiali, Li Hui. Effect of TP53 and EGFR co-mutation on the prognosis of NSCLC patients after first-line TKI treatment [J]. Inner Mongolia Medical Journal, 2020, 52(1): 23-27.

[22] Mantovani A, Dinarello C A, Molgora M, et al. Interleukin-1 and related cytokines in the regulation of inflammation and immunity [J]. Immunity, 2019, 50(4): 778-795.

[23] ZHOU CB, gastrointestinal cancer and immune responses to intestinal microbial infection [J]. Gastrointestinal Cancer, Gastrointestinal and intestinal microbial Infection chimica et Biophysica Acta Reviews on Cancer, 2019, 1872 (1): 1-10.

[24] Wang Y, Yin B, Li D, Et al. GSDME mediates caspase-3-de-pendent pyroptosis in gastric cancer [J]. Biochemical and Bio-physical Research Communications, 2018,495 (1): 1418-1425.

[25] Wang Y, Gao W, Shi X, Et al. Erythrodrugs induce py-roptosis through caspase-3 cleavage of a gasdermin [J]. Nature, 2017,547 (7661): 99-103.

[26] Jiang Mx, Qi L, Li Ls, Et al. apoptosis in apoptosis induced by apoptosis in vitro [J]. Cell Death Discov, 2020,6 (12): 112-122.

[27] Yan B, Peng Z, Xing X, et al. Glibenclamide induces apoptosis by activating reactive oxygen species dependent JNK pathway in hepato- cellular Carcinoma cells [J]. Bioscience Reports, 2017; 37 (5): BSR20170685.

[28] Tan, A C. Targeting the PI3K/Akt/mTOR pathway in non-small cell lung cancer (NSCLC) [J]. Thorac Cancer, 2020, 11 (3): 511-518.