
The First

Azeri (Azerbaijani) Language Next Word Predictor

Ali Pourmohammad
Process Automation Engineering Department

Baku Higher Oil School

Baku, Azerbaijan

pourmohammad@bhos.edu.az

Mensur Gulami, Javid Mahmudov,

Yusif Aliyev, Rovshan Akberov, Anar Sultani
Department of Computer Science

Khazar University

Baku, Azerbaijan

Abstract— Azeri (Azerbaijani) language is one of the more

than 50 Turkic languages which it is a little studied language in

terms of using the modern signal processing algorithms. This

paper tackles the problem of Hidden Markov Models (HMMs)

based next word prediction for this language based on Natural

Language Processing (NLP) principles using Python high-level

programming language. The software is included a small Azeri

vocabulary database, the various Python libraries, a HMM model

and a Web based interface. In this research, the database was

constructed by a predictor parser which it was implemented for

the first time for Azeri language. The database was concluded by

the most general Azeri language words to introduce HMMs

based generated word pairs. The Model was trained by 90% of

the database, hence, predicting the next 5 words on the test data

resulted 54% accuracy.

Keywords— Azeri (Azerbaijani) Language; Next Word

Predictor; Hidden Markov Model (HMM), Natural Language

Processing (NLP)

I. INTRODUCTION

Azeri (Azerbaijani) language is one of the more than 50
Turkic languages [1] which it is a little studied language in
terms of using modern signal processing algorithms and
creation of modern language technology applications [2].
despite a huge number of researches on the other languages

since the 80th years of the last century, Azeri language is a
little investigated language, where all those researches
studied applying Automatic Speech Recognition (ASR),
Text-To-Speech (TTS) or Authorship Recognition (AR)
algorithms on this language as “Dilmanc” project [2-6].
For the first time, the next word prediction for Azeri language
has been mentioned in this research. Nowadays, one of the
most important real-time social media’s necessaries is
electronically conversation and communication. Reducing the
time consumption for typing in the electronically
communications by means of the next word prediction, would
be very helpful for day to day usage. Hence, during the last
decade, one of the highly discussed topics in Natural Language
Processing research domain was the next word prediction for
typing in the electronically communications [7].

Recurrent Neural Networks (RNNs) as Long Short-Term
Memory Network (LSTM) model and Hidden Markov Models
(HMMs) are used to perform prediction of the next word on a
text sequence [7-11]. When the training data is not enough, and
it is limited, HMMs can be used competitively on action

modeling tasks in comparison with the discriminatively trained
RNNs. HMMs should be used for the short-term action
memory (early learning) cases or when quick reaction is
required and RNNs should be used when enough data is
available (long-term action memory). Also, using HMMs, the
time complexity will be decreased compared to using RNNs as
a LSTM network [12]. HMMs are easier to implementation,
and still quite powerful. Therefore, it was decided to use
HMMs in this research

This paper tackled the problem of HMMs based next word
prediction for Azeri language, based on NLP principles using
Python programming language. The software was included a
small Azeri vocabulary database where the amount of it was
about 4 MB, the various Python libraries, a HMM model and a
Web based interface. In this research, the database was
constructed by a predictor parser which it was implemented for
the first time for Azeri language. The database was concluded
by the most general Azeri language words to introduce HMMs
based generated word pairs.

The structure of this paper is as follows. After the
introduction section, it will be shortly reviewed HMMs and
will be discussed the training on the model. Then, it will be
explained the collection of the database issue. After introducing
all parts of the software, some experimental results will be
discussed. Finally, conclusions will be made in the last section.

II. HMMS AND THE TRAINING ON THE MODEL

The task of this research was to have a model which can
predict the next word based on N previously written words. In
this case, we set N to 2. The main reason to choose that specific
number was to reduce the complexity of the model, since we
were not dealing with enterprise level application and to reduce
the overall computation cost. This very specific setting enabled
us to scale once we found the way to generalize. To do this
specific task we had several methods. The first one was to
build a recurrent neural network as LSTM, to accomplish this
task. Currently, quite a lot of enhancements have been spotted
in this area. However, preprocessing and training an LSTM
network would, first, be quite a challenging task with limited
computation power we had. We could have used online
services such as Google Colab, but these systems have all sorts
of consistency problems. The second reason not to choose a
neural network was that it would be an overkill for a small task.
The next solution was to use Hidden Markov Models (HMM).
We decided upon HMM, because it was easier to implement,
and yet quite powerful.

Information Systems and Signal Processing Journal (2020) 5: 1-4
Clausius Scientific Press, Canada

DOI: 10.23977/isspj.2020.51001
ISSN 2371-9427

1

mailto:pourmohammad@bhos.edu.az

HMM is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with
unobservable states. HMM can be represented as the simplest
dynamic Bayesian network. The mathematics behind the HMM
were developed by L. E. Baum and coworkers. HMM works on
previously observed states and tries to find a probabilistic
relationship between given states [13].

In the design phase, we defined 3 tiers for our application.
The first one was the Preprocessing tier (Fig. 1). It deals with
raw text data. Main functionalities of Preprocessing tier
included reading raw text from file, removing all the special
symbols like dash, quotes, exclamations, questions, etc. We
removed all the extra spaces, URLs, email addresses, numbers,
braces, parenthesis, etc. This step was called cleaning step.
The next step in this tier was the transliterates step. Since we
were reading the text from one Azeri text, some sources
encoded the text in Cyrillic letters. It may not seem obvious at
first, because the letter “a” in both cases were identical but
their character codes were different. Hence, the space they
capture was different. The string was separated into sentences,
and sentences were separated into lists of the words. Those lists
of words were input parameters to the model. Speaking of the
model, the second tier was Markov Model. This was where the
actual processing and predicting happens (Fig. 2). Markov
Model preserves 3 databases to capture relations. While
looping through the words of the sentences, it captures the
relations between maximum 3 words sequences. 2 words and
the next words were saved in a dictionary. Number of times
those 2 words sequences occurred, it increased the probability
of predicting the next word if these words were typed. Next,
apart from those 3 words sequences, 2 words sequences were
also captured. Those were one word followed by the next word
type of sequences and probability of those were computed as
well. We also saved the initial words of each sentence to have
an initial prediction rather than waiting for the user to initiate
the process. After processing’s done, the model is serialized
and saved to reduce the time for computation which is already
done just like the way all modern APIs follow. Markov Model
tier exposes only 2 methods, one to get the trained instance, the
next one is the method to predict next words. The final tier was
the UI. This was where the user interacts with the system. It
utilizes the next words method of the Markov Model (Fig. 3).

III. COLLECTION OF THE DATABASE

The software of this research was included a small Azeri
vocabulary database where the amount of it was about 4 MB. it
was constructed by a predictor parser. The database was
concluded by the most general Azeri language words to
introduce HMMs based generated word pairs. In the Step of
Data Collection for HMM Model, Web Scraper was developed
to obtain essential training data for the model, using Python
and Selenium Web Browser Automation tool. The file
“MAIN.PY” of the software, was responsible for establishing a
connection with a website that is needed to scrape and perform
required actions which it was concluded:

• webdriver: is an object of Selenium tool which
utilizes incognito mode in Google Chrome. To launch
Chrome Browser, executable path of webdriver
should be passed as a parameter to
webdriver.Chrome() function.

Fig. 1. The Preprocessing tier

Fig. 2. The Predicting tier

Fig. 3. The UI tier

• browser: is a variable that holds value returned from
webdriver.Chrome().

• browser.get(“URL”): method is used to get desired
webpage. Subsequently the code in Fig. 4 is used to

2

determine whether a website is loaded successfully,
by checking on XPATH value of an HTML attribute,
within predefined time interval.

• browser.find_element_by_xpath(“XPATH”).click(
): is used to automate a click action on an HTML
element to exploit the content it holds. Then it is
assigned to a new, post-variable.

• post.text: Fetches text content of post object.

Fig. 4. browser.get(“URL”) method

IV. THE SOFTWARE

The software was included a small Azeri vocabulary
database where the amount of it was about 4 MB, the various
Python libraries, a HMM model and a Web based interface
(GUI). This software was included these 5 files:

• Main.java

• Main_VC.java

• Main_Model.java

• Main_View.css

• EditorView.fxml
 MAIN.JAVA file is a driver class for the project. It has 2
functions as:

• main (String[] args) - Launches the program.

• start (Stage stage) - Loads the FXML file, sets the
main view controller, Sets new scene (loads the
content of the FXML to this scene), sets window’s
resizability to false, and shows the main view stage.

MAIN_VC.JAVA file is the view controller of the main
scene. It connects EditorView.fxml to the Main_Model.java .
This class implements the Initializable class. There are 3
variables:

• model - It is a private variable, its data type is
Main_Model, and basically connects this class to
Main_Model class.

• listView - It is a private variable, its data type is
ListView<String>, and it is connected to the
EditorView.fxml via @FXML.

• textArea - It is a private variable, its data type is
TextArea, and it is connected to the EditorView.fxml
via @FXML.

This class has 3 functions:

• Main_VC(Main_Model model) - It's a public
function, it is a constructor, and sets a value the
model.

• onCellClicked() - It's a public function, its output is
void, it is connected to the EditorView.fxml via
@FXML, it is called when a cell of the listView is
clicked via mouse, it gets text from the selected cell of
the listView. If it is a ". ", the last character (which is "
") is erased from the textArea. Sets the text of the
textArea to the selected word from the listView. Adds
an " " to the end. Then updates the listView.

• initialize(URL url, ResourceBundle rb) - It's a public
function, its output is void, is called when the scene is
loaded, and adds an event listener to the textArea, so
when the space key is pressed the listView is updated.

MAIN_MODEL.JAVA file class has one variable:

• hmm - It is a private variable, its data type is
MarkovModel, and its initial value is a new instance
of MarkovModel class.

This class has 3 functions:

• loadData(TextArea textArea, ListView listView) - It's
a public function, its output is void, it gets the string
value of the textArea, makes it lowercase, gets an
array of 2 strings using getLastTwo function, gets an
arrayList of predicted words using hmm's nextWord
function, clears the listView, and gets top five
predictions using getFive function and adds them to
the listView.

• getLastTwo(String input) - It's a public function, its
output is an array of strings, and returns an array of
the last to words of a given string.

• getFive(List<String> list) - It's a public function, Its
output is a list of strings, and it returns a list of first 5
elements of the given list.

MAINVIEW.CSS file is a stylesheet for the FXML file. It
helps to modify the attributes of some elements that are not
modifiable within "Scene Builder". It was used 3 main colors
(lightest to darkest): #E6F0D9, #7A817B, and #151721. and
the font is “Exo”.

EDITORVIEW.FXML is a view file for the main scene
that is created in Gluon's "Scene Builder". Our scene has a
TextArea and a ListView. Also, on top there is a HBox with a
Label inside.

V. SOME EXPERIMENTAL RESULTS

A GUI was implemented to test the algorithm. After writing
an Azeri word in the “Text Area” part of the GUI, they will be
predicted 5 the highest probability next words and will showed
in the “List of The Top Predictions (max 5)” part of the GUI
(Fig. 5). Using the GUI, the prediction accuracy was evaluated.
The Model was trained by 90% of the database (Fig. 6). Then,
predicting the next 5 words on the train data resulted 100%
accuracy and predicting the next 5 word on the test data
resulted 54% accuracy (Fig. 7).

VI. CONCLUSIONS

This paper tackled the problem of HMMs based next word
prediction for Azeri (Azerbaijani) language, based on NLP
principles using Python programming language. The software
was included a small Azeri vocabulary database where the
amount of it was about 4 MB, the various Python libraries, a
HMM model and a Web based interface (GUI). In this
research, the database was constructed by a predictor parser
which it was implemented for the first time for Azeri
(Azerbaijani) language. The database was concluded by the
most general Azeri language words to introduce HMMs based
generated word pairs. The Model was trained by 90% of the
database, hence, predicting the next 5 words on the test data
resulted 54% accuracy.

3

Fig. 5. The implemented GUI to test the algorithm

Fig. 6. Training of the model by 90% of the database

Fig. 7. Predicting the next 5 words on the test data

REFERENCES

[1] A.A. Kibrik, E.R. Tenishev, E.A. Poceluevskij and I.V. Kormushin,
“Languages of the world: Turkic languages,” Jazyki mira: Tjurkskie
jazyki, Moscow: Indrik, 1997, pp.542.

[2] A. Abbasov, R. Fatullayev, A. Fatullayev, “HMM-Based Large
Vocabulary Continuous Speech Recognition System For Azerbaijani,”
The Third International Conference on Problems of Cybernetics and
Informatics, Baku, Azerbaijan, September 6-8, 2010, pp.23-26.

[3] K.R. Aida-zade, C. Ardil, S.S. Rustamov, “Investigation of Combined
use of MFCC and LPC Features in Speech Recognition Systems,” IJSP:
International Journal of Signal Processing, 2006, V. 3, pp.105-111.

[4] R. Fatullayev, A. Abbasov, A. Fatullayev, “Dilmanc is the 1st MT
system for Azerbaijani,” In: Proc. of SLTC-08, Stockholm, Sweden,
2008, pp.63-64.

[5] A.M. Sharifova, V.A. Dadalov, I.E. Ibrahimov, “Text Normalization
System for Azerbaijan TTS,” In: Proc. of International Symposium on
INnovations in Intelligent SysTems and Applications (INISTA 2009),
Trabozan, Turkey, 2009, pp.71-74.

[6] K.R. Aida-zade, S.G. Talibov, “Analysis of the effectiveness of the
methods of recognition of authorship of texts in the Azerbaijani
language,” In: Proc. of The 5th International Conference on Control and
Optimization with Industrial Applications, Baku, Azerbaijan, 27-29
August, 2015, pp.183.

[7] P.P. Barman, A. Boruah, " A RNN based Approach for next word
prediction in Assamese Phonetic Transcription," 8th International
Conference on Advances in Computing and Communication (ICACC),
Procedia Computer Science, 2018, 143, pp.117–123.

[8] F.A. Gers, J. Schmidhuber, F. Cummins, “ Learning to forget: Continual
prediction with lstm,” 1999.

[9] J. Luis Garcia Rosa, "Next word prediction in a connectionist distributed
representation system," IEEE International Conference on Systems, Man
and Cybernetics, Yasmine Hammamet, Tunisia, 2002, pp. 6 pp. vol.3-.

[10] T. Mikolov, M. Karafiat , L. Burget, J. Cernocky, S. Khudanpur,
“Recurrent neural network based language model,” in: Eleventh Annual
Conference of the International Speech Communication Association,
2010.

[11] S. Sukhbaatar, J. Weston, R. Fergus, etal.,”End-to-end memory
networks,” in: Advances in neural information processing systems,
2015, pp.2440–2448.

[12] M. Panzner, P. Cimiano, “Comparing Hidden Markov Models and Long
Short Term Memory Neural Networks for Learning Action
Representations,” In: Pardalos P., Conca P., Giuffrida G., Nicosia G.
(eds) Machine Learning, Optimization, and Big Data. MOD 2016.
Lecture Notes in Computer Science, vol 10122. Springer, Cham.

[13] L.R. Rabiner, "A Tutorial on Hidden Markov Models and Selected
Applications in Speech Recognition," Proc. of IEEE, 1989, 77(2),
pp.257-286.

4

