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Abstract: Along with the creation and exchange of a large amount of user content, large-
scale interactive data and complex user relationships have emerged in the social network 
platform, which has attracted more and more researchers' attention. However, the existing 
research on relationship strength is mostly from user feature attributes. Similarity and social 
mobility are carried out, ignoring the influence of network structure on relationship strength, 
and does not consider the directionality and habitual problems of social power. Based on 
this, this paper proposes an asymmetric social network user relationship strength calculation. 
Method, the error method combines the user feature attribute similarity, the network 
structure connection strength, the social interaction strength three dimensions to 
comprehensively calculate the user relationship. When calculating the network topology 
connection strength, not only considers the number of neighbor nodes between users, but 
also considers The directionality and habituation of the social interaction force of the 
neighbor nodes will affect the user's perception of the relationship strength. Therefore, this 
paper calculates the contribution weight of different social forces, and finds the user's social 
strength from the interaction. The proposed method of asymmetric user relationship 
strength can Research findings and information dissemination mechanism microblogging 
opinion leaders in customer relationship strength forecast accuracy helps. 

1. Introduction 

3D rendering research is continuously striving to come closer to a physically realistic representation 
of realworld surfaces, as it is ever more widely applied to fields where a high degree of realism is 
required (e.g., the 3D games industry) or where rapid prototy pingis applied in early stages of 
design (e.g., in the automotive and textile industries). The approach of measuring ABTFs 
(approximate bi-directional texturing functions) is one way to avoid the need for synthetic design of 
material models, as it used to be the standard for a long time even though requiring significant 
manual effort. ABTFs were first proposed, who used a quarter light arc with incident illumination 
from point lights, mounted at angles ranging from zero elevation (grazing angles onto the material 
surface) up to nearly vertically incident light directions. The acquisition of optical material behavior, 
while already spatially varying due to the matrix sensor of the camera, relied on the assumption of 
isotropy, meaning that the material sample response is not affected by its rotation around its surface 
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normal. The resulting ABTF data consisted of two spatial dimensions (within the sample surface) 
and one dimension for light variation, leading to three dimensions in total. Many materials cannot 
be faithfully represented by assuming isotropy, as they are a combination of many different 
materials each with different physical structure, and thus reacting differently at each individual 
surface point to changes of the incoming light direction around the surface normal. Thus, an 
additional dimension of incoming light direction was added. By using a turntable which rotates the 
sample around its surface normal under the camera, 4D ABTF model results from combining the 
two lateral dimensions with two angular dimensions describing the hemisphere of incident light 
directions. Also, the acquisition process was entirely automated and reduced to only a few minutes 
per sample. Effectively, the combinatorial use of rotary and quarter light arc leads to an illumination 
hemisphere with the camera at its center, looking vertically down on the sample. The ABTF 
material model acquired and rendered with the technique represents actually captured real-world 
material behavior as a 4D texture that can be rendered in real time. By only considering one 
perspective vertically above the sample, it provides an abstraction of the higher dimensional 6D 
BTF (bidirectional texturing function) that captures the spatially varying material behavior of flat 
materials, discretized to the resolution of a matrix sensor (2D), for all combinations of incoming 
light (2D) and outgoing observer direction (2D), while preserving the dependence on the incoming 
light direction. [1] 

2.  Technical approach 

2.1. Texture synthesis and periodization 

The algorithm starts with an empty destination texture matching the input image dimensions. It 
consists of four phases. 

Phase 1: Patches are placed at all corners to ensure periodicity, which is achieved by choosing a 
random source patch and splitting it vertically and horizontally through its center for transfer to 
diagonally opposing corners of the target texture. As the inner patch split edges coincide with the 
respective outer texture edges, appending the target texture at any edge reunites the original patch, 
thus leading to artifact-free periodicity for the corner pieces. 

Phase 2: A similar idea is followed to fill the horizontal edges of the target texture, with two 
differences. Firstly, the source patch to be transferred is now horizontally split into two halves 
which then are transferred to vertically opposing edges of the target texture, ensuring periodicity 
as in Phase 1. Secondly, to avoid deterministic behavior, the patch to be transferred is now chosen 
at random from a set of best matching patches[2]. 

2.2. Visual similarity metric 

The metric used to determine optical similarity to guide the process of finding best matching 
patchesfor transfer (see Section 2.3) is a monochrome error image  I, covering exactly the area of 
overlap currently considered. The intensity for each pixel is computed as the sum of squared 
differences between source and destination image space for the three color channels evaluated at 
that pixel position. For 2D textures, the texture is the source image space for this computation, 
while for an ABTF dataset, consistency throughout the 4D texture must be maintained to avoid 
visual artifacts caused by inconsistencies between texture layers captured with different lighting 
directions, so a suitable image space must be chosen that represents the entire ABTF dataset. 
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2.3. Seamless transfer 

Finding the free-form boundary cut following the path with the minimum cumulative error in I is a 
path-finding problem which can be solved using Dijkstra’s algorithm. The algorithm for finding the 
free-form boundary cut presented here computes many path candidates in a set of sub-regions of I. 
Every pixel in a sub-region represents a node in the Dijkstra graph. Interconnections are generated 
for all adjacent pixels (only horizontally and vertically, not diagonally) using the average error (i.e., 
intensity value in I) between both pixels as cost. The inner region is masked out as this part of the 
patch is adopted unchanged and must thus not be crossed by the boundary cut. At first, only the sub-
regions at the left, top, right, and bottom edges are considered. All combinations of start and end 
points on the yellow lines for each of the four highlighted regions are evaluated using Dijkstra’s 
algorithm, leading to the path with minimum cost for the next step. The endpoints of the selected 
paths are then connected through the corner-regions which requires only one evaluation of 
Dijkstra’s algorithm per corner. The full cyclic path represents the minimum error boundary cut[3]. 

3. Calculation process 

3.1. Variation synthesis and rendering 

Periodic regular textures can be mapped to large surfaces back to back without visible repetition 
artifacts, but in the case of irregular and stochastic textures, highly noticeable periodic patterns as in 
appear. This problem can be handled by generating tile sets, within which certain combinations of 
elements are periodic, and the variation of different combinations can be used to fill a regular grid 
and thus create a textured surface without visible seams and repetitions. Many tile sets are based on 
Wang tiles that define different types of edges and compute a tile for every combination of edge 
types so that there is always a compatible tile for a specific neighborhood of adjacent edges. Only 
tiles with the same type 

3.2. Fitting 

The smallest possible tile set using V = 2 corner types(V = 1 is equivalent to a single periodic 
texture) leadsto 24 = 16 texture variations in total.The total memory consumption depends on the 
imageresolution W × H and the sampling density of the virtual lighting hemisphere, expressed by R 
rotations of the sample and E discrete elevations of the light source, and amounts to M = 3W ×H 
×R×E bytes. The data sets used in this work range from 300 MB to 1 GB, which leads to a total 
memory consumption of 4.7–16 GB including all texture variations. This amount exceeds typically 
available graphics memory and also would result in poor frame rates because of the lack of memory 
locality, as the renderer needs to access a widespread range of data when the surface is rendered 
under varying illumination. The key to realtime processing of large tile sets is thus compression. 
We use a fitting scheme we designed explicitly for this challenge. We limit the memory 
consumption for V = 2 corner types, or 16 texture variations, per ABTF data set to under 2 GB by 
fitting an analytic model based on the HSL color space. The choice of this specific color space for 
fitting enables reconstruction of the reflectance behavior for each single pixel on the sample surface 
without visual degradation. 

4. Results 

The synthesis method for measured ABTF material models developed in this work is based on 
image quilting which assembles a new texture by transferring small patches from an input image of 
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identical dimensions to different new locations within the new image while maintaining optical 
similarity within overlapping regions of neighboring patches. We extended it by adding initial 
reassembly phases during which the target texture is made periodic at its boundary regions so that it 
can be seamlessly concatenated border to border in both dimensions. Most importantly, we use the 
output of the algorithm not just to generate a new patch placement distribution for one texture, but 
instead for a non-deterministically generated set of patch transfer prescriptions applied to all ABTF 
data set layers, which both guarantees consistency for different light angles and provides a random 
patch placement for every texture variation to avoid repetition artifacts. The consequence of using 
an entire set of texture variations for all different illumination angles is respective increase in 
memory consumption. Exploiting the fact that only one dimension is significantly affected in HLS 
color space by changes in the direction of incident illumination, we compensate for the increased 
memory consumption by a novel fitting scheme. Consequently, the reflectance behavior for each 
single pixel on the sample surface is reconstructed without visual degradation, while 3D rendering 
of models mapped with texture variationbased ABTF data sets can still be done in real time. 

5. Conclusions 

We have removed the most significant limitation of an existing 4D texture-based system for 
acquiring spatially varying optical material behavior of real object surfaces, in that now neither 
textureseam artifacts nor repetition artifacts disturb the compelling visual experience when 
rendering the material applied to arbitrary 3D geometries, even if the textures are mapped to large 
surfaces with many repetitions. As future improvements, we see firstly that the quality of 
synthesized tile sets can be automatically adjusted according to the occurence of prominent patterns 
within the texture that draw the observer’s attention, since periodicity artifacts depend strongly on 
the texture class. Secondly, to avoid noisy rendering for very dense tiling due to poor surface 
sampling, mipmaps adjusted to texture variations can be used that store a texture pyramid with 
increasing resolution to adaptively react to the sampling resolution. 
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