Design of A Single Band Pentagonal Microstrip Patch Antenna for purpose of Medical Equipment

Bipa Datta1,a, Moumita Mukherjee2,b

1ECE Dept., Brainware Group of Institutions, Barasat, MAKAUT-WB, Kolkata, W.B., India.
2Associate Dean & Academic Coordinator - School of Science, ADAMAS UNIVERSITY Kolkata - 700126, INDIA
abipa.datta@gmail.com, bmm_drdo@yahoo.com

Keywords: Gain, Patch, Slot, Resonant frequency, Return loss, Bandwidth, Pentagon shape.

Abstract: In navigational applications, radar, wireless communications, military applications and satellites we require a system that works with low weight, low profile and high gain. The above mentioned applications are possible with microstrip antenna. This paper presents design of a single band pentagonal microstrip patch antenna to improve gain and efficiency with operating frequency of 10.7591 GHz and 11.1806 GHz (purpose of medical equipment). The idea behind design patch is to decrease the return loss and wider bandwidth by changing the shapes of patch. The proposed antenna consists of a single substrate layer on one side with ground plane on other side. Simulated antenna size has been reduced by 52.64% with an increased frequency ratio. The characteristics features of antenna are investigated on Zealand IE3D simulation software.

1. Introduction

In recent years, the demand for high gain antennas has increased for use in high-frequency and high-speed data communication. Microstrip patch antenna [1-3] characterized by attractive features such as low cost and compact size, but the important problems of patch antenna are its small gain, low directivity and narrow bandwidth because of substrate dielectric has surface wave losses, so to improve the gain [4-6] and directivity has become an important issue in the antenna design field. Improving bandwidth, gain and directivity can be obtained by an antenna with periodic elements (FSS). Frequency selective surface (FSS) is a 2D planar structure consisting of a two dimensional array of slot elements in a metal sheet or an array of metal patch elements fabricated on dielectric substrate. The frequency [7-10] response of FSS is determined by the shape and size of the structure in one period called a unit cell. Aperture and patch screens generally give complementary frequency responses; the field is totally transmitted at the resonant frequency of the aperture while a screen comprised of patches will be nearly totally reflected at the resonant frequency of the patches.

2. Antenna Design

The proposed antenna is shown in the Figure 1. This antenna consists of a pentagonal shape and a Co-axial feed. Two irregular square and two regular triangular shapes are used to design the two given antennas. The characteristics parameters of the antenna are determined by using the design
[16-22] methods available in the literature [1]. The length and the width of the patch are calculated by using below equations. The patch width W shown in Fig. 1 is given by,

$$A = \frac{c}{2f_{r}} \sqrt{\frac{\varepsilon+1}{2}} \tag{1}$$

The length of patch is given by,

$$L = \frac{c}{2f_{r}\sqrt{\varepsilon}} - 2\Delta l \tag{2}$$

Where

$$\Delta l = \frac{12h}{c} \left(\frac{\varepsilon+0.2}{\varepsilon} \right) \left(\frac{\varepsilon+0.254}{\varepsilon} \right) \left(\frac{\varepsilon+0.258}{\varepsilon} \right) \frac{1}{\varepsilon} \tag{3}$$

$$\varepsilon \varepsilon = \left(\frac{\varepsilon+1}{2}\right) + \left(\frac{\varepsilon-1}{2}\right) \sqrt{1 + \frac{12h}{W}} \tag{4}$$

The Pentagonal, Irregular Square Slotted Patch Antenna (PISSPA) is designed for the resonant frequency (f_{r}) of 10.7591 GHz and 11.1806 GHz.

The simulated E plane and H-plane radiation patterns are shown in Figure 2. The simulated E plane radiation pattern of simulated antenna for 10.7591 GHz is shown in figure 3.

Values of the co-ordinates of the two figure (A,B) are as mentioned below:

<table>
<thead>
<tr>
<th>Co-ordinate no.</th>
<th>Figure A</th>
<th>Figure B</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Return loss vs frequency graph is shown in the figure below. Return loss for frequency 10.7591 GHz is 130.867 dB and 71.3423 dB w.r.t. E-phi and E-theta, and for frequency 11.1806 GHz is 126.681 GHz w.r.t. E-phi and E-theta.

Figure 2: Return Loss vs. Frequency (Slotted Antenna)

E-phi and E-theta radiation patterns (polar plot) for frequencies 10.7591 GHz and 11.1806 GHz are shown in below:

Figure 3: E-theta Radiation Pattern for Slotted Antenna at 11.1806 GHz

Figure 4: E-theta Radiation Pattern for slotted Antenna at 10.7591 GHz

Figure 5: E-phi Radiation Pattern for slotted antenna at 10.7591 GHz
The simulated Cartesian E-theta and E-phi radiation pattern (2D) of simulated antenna for 10.7591 GHz is shown in figure 9 [a,b].

Figure 9: E-Plane Radiation Pattern (2D) for slotted antenna at 10.7591 GHz (a) E-theta, (b) E-phi
Figure 10: E-plane Radiation Pattern (2D) for slotted antenna at 11.1806 GHz (a) E-theta, (b) E-phi

The simulated E plane radiation patterns (3D) of E-theta and E-phi of simulated antenna for 10.7591 GHz is shown in figure 11 [a,b,c].

Figure 11: E-Plane Radiation Pattern (3D) for slotted antenna at 10.7591 GHz (a) theta (b) total (c) phi

Figure 12: E-plane Radiation Pattern (3D) for slotted antenna at 10.7591 GHz (a) phi (b) theta (c) total

Figure 13: Simulated VSWR for slotted antenna
All the simulated results are summarized in the following Table 2 and Table 3.

Table 2: Stimulated result for antenna A and B w.r.t return loss.

<table>
<thead>
<tr>
<th>Antenna Structure</th>
<th>Resonant Frequency (GHz)</th>
<th>Return Loss (dB)</th>
<th>10 dB Bandwidth (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slotted</td>
<td>F1=10.7591 GHz</td>
<td>E-phi=130.867</td>
<td>0.6392</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-theta=71.3423</td>
<td></td>
</tr>
<tr>
<td></td>
<td>F2=11.1806</td>
<td>E-phi=126.681</td>
<td>0.7954</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-theta=61.8441</td>
<td></td>
</tr>
<tr>
<td>Frequency Ratio for Slotted Antenna</td>
<td>f2 / f1 =1.1650</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Stimulated result for antenna A and B w.r.t radiation pattern

<table>
<thead>
<tr>
<th>Antenna Structure</th>
<th>Resonant Frequency (GHz)</th>
<th>3dB Beam width</th>
<th>Absolute Gain (dBi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slotted</td>
<td>F1= 10.7591</td>
<td>E-Phi=-43.5165</td>
<td>-3.77219</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-Theta=-45.4945</td>
<td>-11.0338</td>
</tr>
<tr>
<td></td>
<td>F2 =11.1806</td>
<td>E-Phi=-40.5495</td>
<td>-6.60541</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E-Theta=-45.4945</td>
<td>-8.16048</td>
</tr>
</tbody>
</table>

4. Conclusion

In this work, with the help of IE3D simulation software tool, a single band pentagonal microstrip patch antenna Slotted Patch Antenna carried out. The results obtained from IE3D [23] shows almost 52.64% improvements in bandwidth. Significantly better radiation patterns with low values of VSWR are also achieved which is suitable for X-Band for purpose of medical equipment applications.

References

[23] Zeland Software Inc. IE3D: MoM-Based EM Simulator. Web: http://www.zeland.com/