Education, Science, Technology, Innovation and Life
Open Access
Sign In

Hartree-Fock-Bogoliubov calculation of r-process nuclei around A=130

Download as PDF

DOI: 10.23977/jptc.2019.22001 | Downloads: 26 | Views: 4050

Author(s)

Sameena Murtaza 1

Affiliation(s)

1 Department of Physics, Lady Brabourne College,Government of West Bengal P-1/2,Suhrawardy Avenue,Park Circus, Kolkata, 70017

Corresponding Author

Sameena Murtaza

ABSTRACT

The ground-state properties of r-process nuclei are important in nuclear astrophysics. Neutron rich r-process nuclei have been studied under Hartree-Fock-Bogoliubov formalism.The Skyrme interaction SLY6 has been used to calculate the binding energy and ground state deformation along with other properties of nuclei important in the r-process whose peak occurs around mass number 130. Stable and unstable isotopes of Rhodium, Palladium, Silver, Cadmium and Indium have been investigated selfconsistently with SLY6 Hamiltonian. Potential energy surface (PES) has also been studied.

KEYWORDS

Hartree-Fock-Bogoliubov, Skyrme interaction,r-process,pairing correlation

CITE THIS PAPER

Sameena Murtaza, Hartree-Fock-Bogoliubov calculation of r-process nuclei around A=130, Journal of Physics Through Computation (2019) Vol. 2: 47-53. DOI: http://dx.doi.org/10.23977/jptc.2019.22001.

REFERENCES

[1] J.Bardeen,L.N.Cooper and J.R.Schrieffer, Phys. Rev. 108,1175 (1957).

[2] J.Dobaczewski, H.Flocard and J.Treiner, Nucl. Phys. A422,103 (1984).

[3] J.Dobaczewski, W.Nazareiwicz. T.R. Werner, J.F.Berger,C.R.Chinn and J.Decharge, Phys. RevC,53,2809 (1996).

[4] K.Bennaceur, J.Dobaczewski and M.Ploszajczak, Phys. RevC 60, 034308 (1999).

[5] E.Chabanat, P.Bonche, P.Haensel, J.Meyer and R.Schaeffer, Nucl. Phys.A 627,710 (1997).

[6] E.Chabanat, P.Boucher, P.Haensel, J.Meyer and R.Schaeffer, Nucl. Phys.A 635,231 (1998).

[7] M.Bender, P-H.Heenen and P-G reinhard, Rev. Mod. Phys.75, 121 (2003).

[8] J.R.Stone and P-G Reinhard. Prog. Part. Nucl. Phys.58,587 (2007).

[9] M. Bender, K.Rutz,P-G Reinhard and J.A. Maruhn. Eur. Phys.J.A 8,59 (2000).

[10] K.J.Pototzky, J.Erler, P-G.Reinhard and V.O.Nesterenko arXiv:1008.0535vl[nucl-th] 3 August (2010).

[11] J.Dobaczewski, B.G.Carlson, J.Dudek, J.Engel, P.Olbratowski, P.Powalowski, M.Sadziak, J.Sarich, W.Satula, N.Schunck, A.Staszczak, M.Stoitsov, M.Zalewski and H.Zdunczuk,Computer Physics Communication 180,2361-2391(2009)

[12] Atomic mass nuclear data table (2012)

[13] NuDat from nndc.bnl.gov.in

[14] C.Freiburghaus, J-F Rembges, T. Rauscher, E. Kolbe, F-K Thielemann, K-l Kratz, B. Pfeiffer and J.J.Cowan, Astrophys J.516, 381 (1999).

[15] X.D. Xu, B.Sun, Z.M Niu, Z. Li, Y-Z Qian and J. Meng arXiv: 1208.2341v2nucl-th

[16] J. J. Cowan, F-K Theilemann and J.W truran, Phys. Rep. 208, 267 (1991).

[17] Y-Z Qian, Prog. Part. Nucl. Phys. 50, 153 (2003).

[18] M. Arnould, S. Goriely and K. Takahashi, Phys. Rep. 450, 97 (2007).

Downloads: 813
Visits: 59596

Sponsors, Associates, and Links


All published work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright © 2016 - 2031 Clausius Scientific Press Inc. All Rights Reserved.