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Abstract: This paper discusses the way to strengthen the probability and accuracy of multi-armed 
bandit. We are aimed at improving accuracy and probability when the reward of the problem is binary. 
We derive ε-Greedy and Upper Confidence Bounds algorithms in solving the multi-armed bandit 
problems and highlight the derivation and advantages of a most recent solution, namely the Thompson 
Sampling algorithms. Some researchers have proved that the Thompson Sampling is one of the better 
ways to solve the MAB problem. We show several applications of Thompson Sampling across varies 
of research fields to show how each problem is formulated and modeled. This paper helps people 
understand, review and strengthen the basic application and algorithm of Thompson Sampling and 
related solutions. 

1. Introduction 
The implementation of the multi-armed bandit problem can help people make better decisions 

about going out and maximizing the benefits. Multi-armed bandit (MAB) problem [1] is an algorithm 
that helps decision-makers to make maximum benefit decisions over time in the face of uncertainty. 
The question, therefore, arises from the idea of whether a player in a series of slot machines should 
decide which machine he should play once, and how often he should try another machine. 

Then, this paper will introduce the classification of problems about MAB that are mentioned 
indifference paper. According to the papers that we found, there are five types of problems with MAB. 
First of all, theoretical understanding of the MAB problem algorithm was quite limited at that time, 
so it is necessary to show that the Thompson Sampling algorithm [2] achieves logarithmic expected 
regret for the stochastic multi-armed bandit problem, which is also the first problem that we faced. 
The paper Shipra Agrawal et. al. [2] proved it for the first time 5. After that, to achieve the maximum 
efficiency when we use MAB to solve some problems, many feedback control techniques usually 
need accurate models of the dynamics of the robot and its interaction with the surrounding 
environment, but most of the time, it is impossible to make it. The second problem is finding the most 
efficient way to make MAB more efficient. For example, in the paper Yahyaa S. et. al. [3], the main 
goal is finding the Pareto Front which is a set of optimal arms using the Pareto dominance relationship. 
The third one is using MAB to solve some problems in real life. The paper Li O. C. et. al. [4] had 
discussed how to use algorithms to solve exploration/exploitation or bandit problems. Not only this, 
in some papers, finding new algorithms based on the MAB was also becoming another topic and this 
is the fourth problem that we identified. For instance, the paper Munos R. et. al. [5] had already 
considered a variant of the basic algorithm of MAB problem which considered empirical variance of 
the different arms. Finally, some papers had also introduced some variants of the multi-armed bandit 
model and tried to deal with them. One of the examples is that the paper Canada’s Michael Smith 
Genome Science Centre et. al. [6] introduced a new model which is a multi-armed bandit problem 
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with the known trend and in this new model the gambler knows the shape of reward function of each 
arm, but they do not know its distribution. This new problem is derived from many problems which 
are the online such as music, active learning, and interface recommendation applications. When the 
arm is sampled by the model, the reward which was received will change according to the trend that 
was known. 

There is a lot of solutions for MAB. First is ε-Greedy [7] which is a method that chooses a random 
arm in each round to explore. If the probability of result is smaller than probability which is chosen 
by people, then, choosing another one until come out the highest empirical mean. The second is the 
Naive selection algorithm which is a method in that many a time experiments are performed on each 
handle, and the handle with the highest average return is selected. The third is Thompson sampling, 
supposing every machine has been explored many times. Then make a bata distribution, randomly 
pick a point from it, compare their lateral coordinate, and get the highest value. Thompson Sampling 
is more rigorous and accurate. It has more data, and data is more random. Other approaches are more 
limited. Like epsilon greedy just considers short term interest and naive selection algorithm waste a 
lot of time. 

The MAB question can be used in many parts which have not been considered. Primary, in the 
beauty market, sales have many samples for customers to use. Customers will only answer good or 
bad. Sales do not know which is the best product, so they need to find out the best product. Secondly, 
the MAB problem is also popular in the Internet industry. In the delivery of advertisements, 
programmers need to optimize coding based on the number of clicks people have on ads to maximize 
profits and so on. 

Thompson sampling is one of the parts of MAB problem. It is a very effective heuristic for solving 
the exploration/exploitation trade-off. In exploration, we take some risks to gather information about 
unknown options. In any case, Thompson sampling is easy to implement and should therefore be 
considered as a standard baseline. The purpose of the literature review is simple: the research and 
solution of this problem can have a helpful and progressive impact on the decision issues in finance, 
management, media, etc. The enrichment of this problem is an enrichment of unknown information 
in two major fields such as statistics and machine learning--researchers use a combination of 
programming techniques and statistical knowledge to solve real-life application problems - for 
example, applying programming to solve practical problems using UCB (upper confidence bound) 
[8, 9]. 

This article makes three main contributions. First, we provide a detailed review and summary of 
the solution to the MAB—an algorithm that helps decision-makers make decisions that maximize 
returns in the face of uncertainty. Secondly, Thompson's sampling is used as the focus of discussion 
for a review of his multifaceted applications - including Mechanical improvements, Online Influence, 
Online learning, Telecommunication, etc. The downside of pure Thompson Sampling is that it is 
fundamentally a regret-minimization algorithm. 

2. The solutions of MAB 
2.1 MAB formulation 

Presuming every machine as an arm, player is user or anything which is controlling the machine, 
and reward is result (only be used when a question has only two possible outcomes it can be described 
by the Bernoulli distribution; for instance, yes or no, win or lose, good or bad, like 1, 0). 

2.2 ε-Greedy Algorithm 
To solve the MAB problem, there are three solutions. The first solution is the ε-Greedy Algorithm. 

This algorithm means that when we try to solve a problem, we will always make the best choice for 
the moment. In other words, through this algorithm, we get a locally optimal solution in a certain 
sense. However, the ε-Greedy Algorithm has a high risk when selecting a sub-optimal socket and, 
after that, stick to selecting. As a result, we just could not find the best socket. The ε-Greedy is 
probably the strategy that is the simplest and the most widely used to solve MAB problem and it was 
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first described by Watkins [10]. To solve MAB problems, what we need to do first is to explore with 
the probability ε, which means that we just choose one machine from N and let players try with the 
probability ε\N. Update the probability from 1 to N of the machine according to the feedback from 
the players. After that, we choose the machine which has the highest probability of getting the reward. 
In this way, exploration is added to the standard Greedy algorithm. Each action will be sampled 
repeatedly to get a more and more estimate of the true value. And because of the random sampling of 
action, the estimated reward values of all actions will converge on the true values. At this time, the 
disadvantages are shown. These non-optimal actions will be chosen continually, then long after they 
have been regarded as the non-optimal actions, their reward estimates will be refined. Because of this, 
the exploitation of the optimal actions is not maximized and the total reward will be less than it may 
get. 

2.3 Upper Confidence Bounds 
UCB is a deterministic algorithm for reinforcement learning that explores and develops confidence 

bounds based on the confidence bounds that the algorithm assigns to each machine in each round of 
exploration. These bounds are reduced when a machine is used more than others - when a person 
chooses an item to buy, if an item has been recommended k times (k feedbacks obtained), we can 
work out the probability that the item is good as 

 
𝑝𝑝
˜

= ∑𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑘𝑘

                                 (1) 
 

, 𝑃𝑃
˜
 is close to the true value as k approaches infinity, but in practice, the experimental data cannot 

be infinite, so our inferred probability and the actual probability will be a difference Δ, i.e. 
 

𝑝𝑝
˜
− 𝛥𝛥 ≤ 𝑝𝑝 ≤ 𝑝𝑝

˜
+ 𝛥𝛥                             (2) 

 
So, people can define a new strategy: always be optimistic that the return on each item is𝑝𝑝

˜
+ 𝛥𝛥 

for each recommendation, which is the famous Upper Confidence Bound algorithm. In summary, 
there are three effective ways to obtain upper confidence bounds in the Multi-Armed Bandit Problem, 
namely Hoeffding's Inequality, UCB1, and Bayesian UCB. 

2.3.1 Hoeffding’s Inequality 
Hoeffdings's inequality applies to bounded random variables. With a series of two independent 

random variables 𝑋𝑋1, … ,𝑋𝑋𝑛𝑛… Suppose that for all1 ≤ 𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖, 𝑥𝑥𝑖𝑖 is an almost bounded variable, i.e., 
satisfies:ℙ = 1. 

Seila contributes by reviewing some advanced aspects of approaches for assessing data generated 
by simulations [11]. Let {𝑋𝑋i, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛} be a negatively associated sequence, and let {𝑋𝑋∗𝑙𝑙̇, 1 ≤ 𝑖𝑖 ≤
𝑛𝑛} be a sequence of independent random variables such that X* i and X i have the same distribution 
for each i=1, 2, ..., n. It is shown in this paper that 

 

𝐸𝐸𝐸𝐸 �∑
𝑛𝑛
𝑖𝑖=1𝑋𝑋𝑖𝑖� ≤ 𝐸𝐸𝐸𝐸 �∑

𝑛𝑛
𝑖𝑖=1𝑋𝑋∗𝑖𝑖�                         (3) 

 
for any convex function f on R 1 and that 
 

𝐸𝐸𝐸𝐸 �𝑚𝑚𝑚𝑚𝑥𝑥
1≤𝑘𝑘≤𝑛𝑛

∑
𝑛𝑛
𝑖𝑖=𝑘𝑘𝑋𝑋𝑖𝑖� ≤ 𝐸𝐸𝐸𝐸 �𝑚𝑚𝑚𝑚𝑥𝑥

1≤𝑘𝑘≤𝑛𝑛
∑
𝑘𝑘
𝑖𝑖=1𝑋𝑋∗𝑖𝑖�                     (4) 

 
for any increasing convex function. [12]. Copulas and quasi-copulas are used by for similar 

possible best bounds on arbitrary sets of bivariate distribution functions with given margins. 
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Shivaswamy proposes a new boosting method based on a recently introduced notion called sample 
variance penalization, which is driven by an empirical version of Bernstein's inequality [13]. The goal 
of Matusz is to ensure a reliable and interpretable error bound, not to improve accuracy [14]. To this 
purpose, Pasargadae proposes the Fast-Hoeffding Drift Detection Method (FHDDM), which uses a 
sliding window and Hoeffding's inequality to find drift spots. Bentkus, Sason, and Bardenet are some 
of the other influential works [15-17]. 

2.3.2 UCB1 
The UCB1 algorithm relies on a function that transforms a collection of average rewards from trial 

t into a set of decision values, which are then used to determine which goods to buy. 
We want to create more confidence bound estimates when more rewards are observed, hence one 

heuristic is to reduce the threshold p in time. 
Setting p = t-4, as the number of t rounds increases, this small probability converges rapidly to 0. 

Eventually we obtain the UCB1 algorithm, which acts as: Here the previous equation here refers to 
the average observed reward of arm a at moment t, t is the current time step in the algorithm and n is 
the number of times arm a has been pulled so far. 

 

𝑈𝑈𝑡𝑡(𝑚𝑚) = �2𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡
𝑁𝑁𝑡𝑡(𝑟𝑟) and  𝑚𝑚𝑡𝑡𝑈𝑈𝑈𝑈𝑈𝑈1 = 𝑚𝑚𝑎𝑎𝑎𝑎𝑚𝑚𝑚𝑚𝑥𝑥

𝑟𝑟∈𝒜𝒜
 𝑄𝑄(𝑚𝑚) + �2𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡

𝑁𝑁𝑡𝑡(𝑟𝑟)
                (5) 

2.3.3 Bayesian UCB 
Bayesian-UCB is a unified framework for several variants of the UCB algorithm for solving 

different bandit problems (parametric multi-armed bandit problem, Gaussian bandit problem with 
unknown mean and variance, linear bandit problem). 

When utilizing the frequentist cumulated regret as a measure of performance, Kaufmann shows 
that approaches derived from this second perspective perform well [18]. The goal of Russo is to 
provide a Bayesian regret bound for posterior sampling that can be tailored to a variety of model 
classes [19]. Maturana suggests that findings from this type of data have low translational potential 
for public health initiatives [20]. The goal of Kaufmann is to show that given a large class of prior 
distributions, if the distribution of rewards belongs to a one-dimensional family, the Bayesian 
algorithm UCB, which depends on the posterior distribution quantile, is asymptotically optimal [21]. 
Kirschner addresses bandits with heteroscedastic noise, where the noise distribution is explicitly 
allowed to depend on the evaluation point [22]. In order to improve the efficiency of the BO epoch, 
Dai proposes to combine BO in particular with Bayesian optimal stopping of the upper confidence 
limit of the Gaussian process [23]. TS-Cascade, a Thompson sampling algorithm for the cascading 
bandit issue, being investigated by Cheung [24]. 

Kharkovskii’s Gaussian Process Upper Confidence Bound technology is the first privacy-
preserving Bayesian Optimization solution with verifiable performance guarantees in an outsourcing 
environment. [25]. 

In the absence of a comparative study of compensation strategies, this article attempts to synthesize 
and highlight the influence of compensation strategies on the performance of the Bo algorithm on 
UCB through 11 numerical examples and two turbomachinery designs. 

2.4 Thompson sampling 
Thompson sampling, named after William R. The first time it come out is in 1933. Then it always 

is used for multi-armed problems. Thompson sampling is one of the oldest heuristics to address the 
exploration/exploitation trade-off, but it is surprisingly unpopular in the literature [26]. However, 
Thompson Sampling is not only about improving the estimate of the average reward and also 
enlarging the range of numbers that are chosen. This method is increasing accuracy and confidence. 
According to the data increasing, the Thompson Sampling will be more accurate. And the process of 
climbing people’s trust is known as Bayesian Inference. When a question has only two possible 
outcomes it can be described by the Bernoulli distribution; for instance, yes or no, win or lose, good 
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or bad (like 1, 0). When the conclusion of the question is binary, then the beta distribution is the best 
way to have a model. The unknown number in the beta distribution is a sum. The formulation of a 
mean of the beta distribution is (𝛼𝛼 is number of successes, 𝛽𝛽 is number of fails): 

 
𝐸𝐸[𝛽𝛽] = 𝛼𝛼

𝛼𝛼+𝛽𝛽
= 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛𝑛𝑛𝑟𝑟𝑛𝑛

𝑡𝑡𝑙𝑙𝑡𝑡𝑟𝑟𝑙𝑙𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟𝑟𝑟𝑙𝑙𝑛𝑛𝑡𝑡𝑟𝑟𝑖𝑖𝑟𝑟𝑙𝑙𝑛𝑛                        (6) 
 

Formulation of Density of beta distribution: 
 

𝐸𝐸(𝑥𝑥;𝛼𝛼,𝛽𝛽) = 𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐𝑐𝑐𝑚𝑚𝑛𝑛𝑐𝑐 ⋅ 𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1                        

= 
𝑥𝑥𝛼𝛼−1(1−𝑥𝑥)𝛽𝛽−1

∫0
1𝑛𝑛𝛼𝛼−1(1−𝑛𝑛)𝛽𝛽−1𝑟𝑟𝑛𝑛

                             (7) 

 
= 𝛤𝛤(𝛼𝛼+𝛽𝛽)

𝛤𝛤(𝛼𝛼)𝛤𝛤(𝛽𝛽)
𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1                         (8) 
 

= 1
𝑈𝑈(𝛼𝛼,𝛽𝛽)

𝑥𝑥𝛼𝛼−1(1 − 𝑥𝑥)𝛽𝛽−1                          (9) 
 

The principle behind Thompson sampling is the Beta distribution mentioned above. Using the beta 
distribution, the Thompson Sampling can be used in four steps. First, take out the data 𝛼𝛼 and 𝛽𝛽 
correspond to each group. Then, using 𝛼𝛼 and 𝛽𝛽 as parameters from different groups to produce a 
random number by beta distribution. After that, Sorting by random number and seeing data belong to 
which group. In the end, observing user feedback, if the user clicks, add 1 to the 𝛼𝛼, otherwise, add 1 
to 𝛽𝛽. Why the Thompson Sampling is effective? At first, if a sample is selected a lot of times which 
means 𝛼𝛼+ 𝛽𝛽 is large, the distribution will be narrow. Use it to generate random numbers, close to 
the average. Secondly, if the data is not only 𝛼𝛼+𝛽𝛽 large (the distribution is narrow) but also 𝛼𝛼+𝛽𝛽 is 
also large and close to 1, meaning that this is good data, the average return is good. Finally, if an 
𝛼𝛼+𝛽𝛽  of distribution is small and wide which means it has not been selected too many times, 
indicating that the date is not sure (This time, it is good, next time may be bad). But there is still a 
chance to exist, not completely abandoned. 

3. The applications of Thompson sampling 
3.1 Main content 

In this part, we consider mechanical improvements (strengthening Vibration-Based Indoor Human 
Sensing Quality), Online Influence (Maximization under Independent Cascade Model with Semi-
Bandit Feedback), telecommunication (A multi-armed bandit model for wireless network selection), 
online learning (Model-Independent Online Learning for Influence Maximization). 

3.2 Mechanical improvements 
Thompson sampling [2] was used in strengthening Vibration-Based Indoor Human Sensing 

Quality.[27] More and more people choose to install smart furniture. But due to the structure, layout 
and materials of the houses, the information collected by the sensor may be inaccurate. Therefore, the 
team of this paper used Thompson sampling [2] to strengthen the install smart furniture. They used 
sensor as an arm in MAB, user as a player in MAB, reward in this paper is the feedback from the user 
(good or bad). 

Regarding how the data is collected, the first is that machine gets the possible sensor locations 
(provided by the CPS/IoT sensing system) and the deployment environment characteristics for each 
sensor location. Then, through the model, the machine recommends the best sensor location from the 
possible locations. At last, the users give feedback and the programmers update the model accordingly. 
They formulate this task as a MAB problem. They ran seven experiments with four machines in five 
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environments, each running 200 times. They use Normal distribution and Bayes’ theorem to calculate 
the mean and the covariance matrix. And then based on that the system selects and recommends the 
location with the highest expected reward. The cause of improvement of Thompson sampling [2] is 
its better exploration and utilization of policies without tuning hyper-parameters and its parametric 
learning of location features with better generalization ability.As shown in table 1, it can clearly show 
that Thompson Sampling is more precise than the Random Selection in the early time steps which 
can attract the interest of users to do the survey (T is period). 

Table 1. Evaluation in the offline setting. �@� is short for ������@�. [27] 

 
3.3 Online Influence 

The MAB problem can be extended to maximise the impact of social networks, i.e., to maximise 
the number of users who are aware of the product to the 'initial' user base to which the product is 
exposed. Previous work assumed a model of known broadcast, but proposed a new parameterization 
method, using semi-bandit, to make the author frame unknown to the base broadcast and statistical 
power for data. When considering learning how to choose good seeds online, a new marketer wants 
to use the existing network to market their product. They need to select a good seed set while learning 
about the factors that influence the spread of information, which inspires the learning framework of 
the IM semi-bandit, working with marketers performing instant messaging in multiple 'rounds' and 
learning the factors that control the spread dynamically. In the influence-maximizing semi-robust 
problem, the agent knows 𝒢𝒢 and 𝒞𝒞, but not the diffusion model 𝒟𝒟. Specifically, the agent does not 
know the model of 𝒟𝒟. Consider a scenario in which the agent interacts with the social network in a 
T poll. In each round of 𝑐𝑐 ∈ {1, … ,𝑇𝑇}, the agent first selects a seed set 𝒮𝒮𝑡𝑡 ∈ 𝒞𝒞 based on its prior 
knowledge and past observations, and then naturally samples a diffusion random vector 𝒘𝒘𝑡𝑡 ∼ ℙ. 
According to 𝒟𝒟(𝒘𝒘𝑡𝑡), influence spreads from 𝒮𝒮𝑡𝑡 into the social network. After each such IM attempt, 
the agent observes the paired impact feedback and uses it to improve subsequent IM attempts. Each 
round corresponds to one IM attempt for the same or similar products. Each attempt results in a loss 
of impact diffusion (measured in terms of cumulative regret). This leads to the classic exploration-
exploitation trade-off, where marketers either select seeds that will improve their knowledge of the 
diffusion process ('exploration') or find the set of seeds that will lead to the greatly expected diffusion 
('exploitation'). To the end, a two-by-two influence semi-robust feedback model is proposed 
anlinuxnucb-based robber algorithm is developed. Independent analysis of our model shows that the 
regret bound is better depending on the size of the network, and experimentally evaluates our 
framework as a robust base diffusion model and can effectively learn near-optimal solutions [28]. 

3.4 Online learning 
Another notably influential article on the bandit problem in marketing fields such as media article 

[29] provides new ideas on the bandit problem - an analysis of IMLinUCB, a computationally 
efficient algorithm based on UCB. IMLinUCB represents its past observations as a positive definite 
matrix (Gram matrix) 𝑴𝑴𝑡𝑡 ∈ ℜ𝑟𝑟×𝑟𝑟 and a vector𝐵𝐵𝑡𝑡 ∈ ℜ𝑟𝑟.𝑴𝑴𝑡𝑡 = 𝑰𝑰 + 𝜎𝜎−2𝑿𝑿𝑡𝑡⊤𝑿𝑿𝑡𝑡, 𝐵𝐵𝑡𝑡 = 𝑿𝑿𝑡𝑡⊤𝑌𝑌𝑡𝑡. (Let Xt 
be the matrix whose row is the eigenvector of all observed edges in step t, and Yt be the binary column 
vector in step t.) It receives the edge semi-robust feedback and uses it to update Mt and Bt. where, at 
each round t, the computational complexity of steps 1 and 3 of IMLinUCB are both 𝒪𝒪(|ℰ|𝑑𝑑2) , it is 
of value1 that IMLinUCB reduces to CUCB, so that in some sense the confidence radius of 
IMLinUCB is the same as CUCB up to a logarithmic factor. This article also addresses the issue of 
influence maximization (IM), mainly in relation to social media campaigns and online learning, and 
offers new ideas to address IM. On many social networks, the probability of activation (of a user 
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being influenced) is unknown. One possibility is to learn this information from past propagation data. 
In practice, however, this data is difficult to obtain, and a large number of parameters makes learning 
challenging. This inspired the IM Bandit learning framework. Their cumulative regret bound is 
polynomial overall quantities of interest, achieving an approximate optimal dependence on the 
number of interactions and reflecting the topology of the network and the activation probabilities of 
its edges, thus providing insight into the complexity of the problem. This paper addresses these two 
challenges under the IC model of access-edge semi-robber feedback. Zheng Wen refers to their model 
as an independent cascaded semi-robber (ICSB). A new model-independent parameterisation and a 
corresponding agent objective function have been developed in response to the needs of the IM 
problem. We use this parameterisation to propose DILinUCB - a semi-robust learning algorithm for 
IM that does not rely on diffusion. The authors conjecture that a more statistically efficient algorithm 
with an additional O(Vn) factor removed from the regret bound may be obtained by a proper 
generalisation of the source node. 

3.5 Telecommunication 
One of the fields of the applications of MAB and Thompson sampling that this part introduces is 

telecommunication. This application came from the paper Stefano Boldrini et. al. [30]. This problem 
can be defined as “Which wireless network that is available to use could offer the best performance 
that has the best quality to the users”. So, the main goal is to maximize the quality that the final users 
could experience. At first, it just introduced a new model called muMAB which predicted two kinds 
of actions: measure and use. After that, the paper also introduced two other new algorithms: measure-
use-UCB1(muUCB1) and Measure with Logarithmic Interval (MLI), which are based on the model 
muMAB, to analyze the effect of muMAB. Then they decided to have the tests on the impact of the 
introduction of the proposed model which was carried out through simulations and compared the 
regret of six different algorithms which are: UCB1 [31], muUCB1, MLI, ε-decreasing [31, 32], ε-
greedy [33], POKER [34]. These six algorithms were tested against both synthetic and captured data 
which followed some common settings. The synthetic data were produced by the three different 
distributions of the reward probability density function, the Bernoulli distribution, the truncated 
Gaussian distribution and the exponential distribution, with different ratio of TU/TM. And there are 
two different configurations, which are the Hard configuration and the Easy configuration. Then they 
had the simulations for the data and used three ways to obtain the result and got an analysis of the 
effect of the logarithmic conversion. The first one was the synthetic rewards generated using the Hard 
configuration. For example, for the Bernoulli distribution, there are three figures. 

   
(a) Hard configuration                         (b) Easy configuration 

Figure 1. Considered the performance of the regret of the six different algorithms and the 
probability density function is Bernoulli distribution when TU/TM=1. 

 

107



  

 

 

  
(a) Hard configuration                         (b) Easy configuration 

Figure 2. Considered the performance of the regret of the six different algorithms and the 
probability density function is Bernoulli distribution when TU/TM=5 

 
(a) Hard configuration                            (b) Easy configuration 

Figure 3. Considered the performance of the regret of the six different algorithms and the 
probability density function is Bernoulli distribution when TU/TM=10. 

In this situation, the POKER algorithm gave the best overall behavior according to these three 
graphs. And could also find that for the new algorithms, their performance improved compared to the 
other algorithms. The muUCB1 algirithm had a bad performance when TU/TM=1, but when 
TU/TM=10, muUCB1 had a regret comparable to the POKER algorithm. The second result was 
obtained in the Easy configuration. Then the third one was obtained using real data and linear 
conversion. In the end, the paper Vermorel, J. et. al. [34] analyzed the results and found that the 
conservative algorithm will spend more time in measuring, such as UCB1 and muUCB1. It should 
be preferred when the different arms have similar rewards. 

According to the result, the MLT algorithm and the muUCB1 algorithm could use the measuring 
phase that is introduced by the muUCB1 algorithm. As the increase of the TU/TM ratio, the 
performance of these two algorithms will continue to be improved. All in all, we can just choose the 
new model, which is muMAB, to describe the question of network selection, because it is more 
flexible than the traditional algorithm. 

3.6 Discussion 
The four applications introduced in this part are just a part of all applications of MAB problems 

and Thompson sampling, which shows that the Thompson sampling is widely used in various fields 
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in our life. But sometimes the variants of the Thompson sampling are more preferred than itself. For 
example, the fourth application uses the model muMAB and some other algorithms which are the 
variants of the MAB and the model IMLinUCB used in the third application about online learning is 
also the variant of UCB algorithms which is one of the solutions of Thompson sampling. These four 
applications also offer a new way to solve problems, which is that just turn the problems that are 
difficult to understand and solve into data that is more visualized and pellucid. So, it is necessary for 
the world to be digitized and the IT industry and the big data which are growing fast now are just 
suitable examples to verify this trend. Thompson sampling is also used in robotics [35], such as multi-
target such scenarios [36, 37]. 

4. Conclusion 
This article focuses on the multi-armed bandit problem and Thompson sampling, one of the 

solutions to the multi-armed bandit problem. Thompson sampling and the multi-armed bandit 
problem is a relatively mature problem, and a summary and discussion of the multi-armed bandit 
problem can also help us to make better decisions about the problem. In the past year, there have been 
some recent developments in the multi-armed bandit problem and Thompson sampling. For the multi-
armed bandit problem, the agents' regret with respect to the optimal allocation is poly-logarithmic in 
the time horizon was smoothly demonstrated. Two algorithms that use a bandit to find the optimal 
exploration of the contextual bandit algorithm was proposed, which might be the first step towards 
the automation of the multi-armed bandit algorithm, and in general the research on the multi-armed 
bandit problem over the past year has led to better exploitation of the problem and its use by humans. 
The solution to this problem (the multi-armed bandit problem), the Thompson sampling method, has 
also made valuable progress and practical applications - the problem of recommending relevant con-
tents to users of internet platforms in the form of lists of items, called "slates", can further refine this 
solution. In summary, both the multi-armed bandit problem and Thompson sampling are valuable and 
worthy of study, and this article will not only provide an understanding of the basics and applications 
of these two related topics but will also help one to review and review the multi-armed bandit problem 
and Thompson sampling. 
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