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Abstract: Optoelectronic sensing, such as reflectance or absorbance spectroscopy, enables
non-contact measurement and provides informative signals for material characterization,
quality inspection, and process monitoring. However, practical optoelectronic spectral
analytics is often limited by scarce labels and distribution shifts caused by illumination
variation, device drift, and measurement noise. To address these issues, a physics-guided
self-supervised dual-stream Transformer framework is developed for robust learning from
optoelectronic spectra. First, radiometric-consistent calibration is performed and physically
meaningful spectral views are constructed, including calibrated spectra and derivative-
enhanced representations. Second, a dual-stream Transformer encoder is designed to jointly
model the complementary views, where cross-attention and gated fusion are adopted to
adaptively aggregate spectral features. Third, self-supervised pretraining is introduced
through masked spectral modeling and condition-invariant contrastive learning, enabling
label-efficient representation learning. In addition, physics-regularized objectives, including
illumination-invariance consistency and spectral smoothness priors, are incorporated during
fine-tuning to improve generalization under cross-condition evaluation. Experimental results
on optoelectronic spectral datasets demonstrate that the proposed method consistently
improves predictive accuracy and robustness compared with representative baselines,
particularly under low-label settings and cross-device testing.

1. Introduction

Optoelectronic  spectroscopy (e.g., laser absorption spectroscopy, near-infrared (NIR)
spectroscopy, and related spectral sensing modalities) offers fast, non-destructive, and information-
rich measurements for chemical analysis, environmental monitoring, and biomedical sensing.
However, practical deployments still face algorithmic bottlenecks: spectra are high-dimensional and
often exhibit baseline drift, pressure/temperature broadening, and instrument-dependent artifacts,
which can obscure weak features and degrade generalization across devices and operating conditions.
Recent years have therefore seen a clear shift from purely chemometric pipelines toward deep
learning models that learn hierarchical representations directly from spectral sequences, while
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emphasizing transferability and robustness for real-world sensing workflows [1]. In parallel, compact
optoelectronic sensors increasingly integrate learning-based denoising and deconvolution to separate
overlapping absorption lines under ambient conditions, strengthening the motivation for spectrum-
native architectures that can operate reliably on edge or low-power platforms [5].

Transformer-based modeling and self-supervised representation learning have recently emerged
as a promising direction for optoelectronic machine learning, because they can capture long-range
dependencies across wavelengths (or wavenumbers) and can exploit large amounts of unlabeled
spectral data. A notable trend is masked modeling, where a transformer is trained to reconstruct
intentionally hidden spectral components, producing transferable embeddings that support multiple
downstream tasks (classification, regression, retrieval) with limited labels [4]. Complementary to
masked objectives, contrastive representation learning improves invariance by pulling together
spectra that should match under nuisance variations while separating distinct classes, which is
particularly attractive for small or imbalanced spectroscopy datasets [3]. Meanwhile, physics-
informed neural networks provide a mechanism to inject domain constraints—such as physically
meaningful calibration structure and background separation—directly into the loss function, offering
a path to better out-of-distribution stability without relying solely on supervised labels [2]. Building
on these developments, this study develops an optoelectronic spectrum learning framework that
prioritizes transformer-based spectral dependency modeling, self-supervised pretraining to reduce
label dependence, and physics-guided constraints to improve calibration and cross-condition
robustness.

2. Related Work

Recent progress in optoelectronic sensing has made spectral acquisition (e.g., near-infrared and
Raman spectroscopy) increasingly fast and accessible, shifting the core challenge from measurement
to robust interpretation and deployment. In real industrial or in-line settings, spectra are frequently
affected by device-dependent response functions, sampling interfaces, and environmental
disturbances, leading to distribution shifts that degrade predictive stability. Domain adaptation
methods have therefore been explored to improve robustness in near-infrared spectroscopy
classification under practical process variations [6]. In parallel, calibration-transfer research has
continued to develop standard-free approaches that explicitly handle inter-instrument mismatch,
including cases with non-overlapping wavelength ranges, providing a principled foundation for cross-
device generalization in spectroscopy pipelines [7].

Beyond robustness-oriented transfer learning, transformer-style sequence modeling and self-
supervised learning have become increasingly influential for reducing labeling cost and strengthening
generalization in spectral analytics. Attention-based models have been used for infrared-spectrum-to-
structure and automated structure elucidation, indicating that long-range spectral dependencies and
peak—baseline interactions can be captured effectively by modern deep architectures [8]. Similar
transformer designs have also been proposed for Raman mixture quantification, supporting improved
modeling of overlapped component signatures [9]. To reduce dependence on large labeled corpora,
masked autoencoder strategies have been introduced for Raman data, demonstrating that masked
reconstruction can learn biologically or chemically meaningful spectral representations for
downstream tasks [10]. Multimodal contrastive learning further extends this direction by aligning
complementary measurement views to enhance representation transferability for structure-related
inference [11]. Related advances have also appeared in optical time-series domains such as functional
near-infrared spectroscopy, where transformer-based learning improves prediction of short-channel
signals and suggests broader applicability of attention mechanisms to optoelectronic sensing data
beyond static spectra [12]. At the same time, multi-instrument benchmarking studies on Raman
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mixture analysis have highlighted the need for standardized evaluation under cross-spectrometer
settings to fairly compare algorithms and to identify robust modeling choices [13]. In support of
scalable data collection, automated high-throughput Raman measurement systems have been reported
to generate larger, more standardized datasets, enabling stronger data-driven modeling in
optoelectronic spectroscopy [14]. Finally, open-science and FAIR (Findable, Accessible,
Interoperable, Reusable) practices have been increasingly emphasized for artificial-intelligence-
driven Raman spectroscopy, improving reproducibility and accelerating the development of reliable
spectral learning pipelines [15].

3. Methods
3.1. Overall Framework

The proposed optoelectronic—machine-learning pipeline targets robust understanding of spectral
measurements (e.g., near-infrared absorbance spectra and Raman spectra) under practical
disturbances such as baseline drift, interference fringes, illumination fluctuation, and cross-
instrument domain shift. The overall design combines physics-consistent preprocessing, dual-stream
patch Transformer representation learning, and self-supervised pretraining to reduce label
dependency. Patch-based tokenization follows the “patch time-series transformer” concept to
improve long-context modeling efficiency.

3.2. Physics-Consistent Measurement Modeling and Preprocessing

(1)Radiometric correction and absorbance conversion.
Given raw intensity spectrum I(A), dark reference I;(A), and white reference I, (1), corrected
reflectance is:

_1)-1,4)
R(4)= I,(A)—1,(A)+€' @)

where € > 0Oavoids division by zero. Absorbance is then computed as:
A(2) =~l0g,, (R(2) +¢). )

This conversion improves comparability across illumination conditions and is commonly adopted
in optoelectronic spectroscopy analytics.

(2)Physics-aware artifact suppression (etaloning / fringes as an inverse problem).

In many Raman/optical systems, etaloning can be approximated as a quasi-periodic interference
term added to the clean spectrum:

y(A) = x(1) +asin(2z f A+ ¢) +n(A), 3)

where y(A)is observed, x(A)is artifact-free, and n(A1)is noise. A physics-informed module can be
introduced to estimate X(A)while constraining the reconstructed signal to be consistent with an
interference-forward model (inverse modeling). This idea aligns with recent physics-informed neural-

network formulations for etaloning correction in Raman spectra.
A practical regularization term can penalize residual fringe energy after reconstruction:

Lynge =IIHR) IE, (4)

where H (-)denotes a band-pass operator centered at expected fringe frequencies (implementable
via Fast Fourier Transform (FFT) filtering). This does not require explicit labels and improves
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downstream robustness.
3.3. Patch Tokenization and Token Embedding

Let a preprocessed 1D spectrum be A € REsampled at Lwavelength points. It is split into N =
[L/p]non-overlapping patches of length p:

A=[AD A® AN AD cRP, 5)
Each patch is projected to a d-dimensional token via a linear embedding:
t =W, AV +Db, +e,t, e R?, (6)

where W, € RY? | b, € R%, and e; is the positional embedding. Patch-based modeling is
consistent with efficient long-context Transformer designs used in time-series learning.

3.4. Dual-Stream Patch Transformer with Cross-Attention and Gated Fusion

(1) Transformer encoder (single stream).
Given token matrix T € RN*¢ self-attention is:

Attention(Q, K,V) :softmax(Q\/Ka JV, (7)
with Q = TWy, K = TWy, V = TW,,. The encoder block applies Multi-Head Attention (MHA),
residual connections, and a position-wise Multi-Layer Perceptron (MLP).
(2)Cross-attention (two streams).
Let stream-S (spectrum tokens) produce Hg € R¥*¢, and stream-M (auxiliary tokens, optional)

produce Hy, € RY 'xd Cross-attention injects auxiliary cues into spectral representations:

CA(Hg, H,,) = Attention(H W, H W, , H W, ). (8)
(3)Gated fusion.
A learnable gate controls the contribution of each stream:
g=0(W,[h;h,1+b, ), )
z=g0oh +(1-g)oh,, (10)

where hsand hy,are pooled features (e.g., mean pooling over tokens), [-;-]is concatenation, o (-)is
the logistic function, and (is element-wise product. The fused representation zis passed to task heads
for classification/regression.

3.5. Self-Supervised Pretraining Objectives

Self-supervised learning is used to exploit large unlabeled spectral archives and reduce dependence
on costly chemical labels.

(1)Masked spectral modeling (reconstruction).

A random subset of patches M' c {1, ..., N}is masked at ratio p. The model reconstructs masked
patches A®). Mean Squared Error (MSE) over masked patches is:

LS a0~ A0 (11)

EMSM = miEM
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Masked modeling has been shown effective for time-series pretraining under a Transformer
backbone (e.g., SIMMTM).

(2)Spectra—structure contrastive alignment (optional for IR tasks).

For infrared spectra tasks where paired molecular structures (or approximate candidates) exist,
contrastive learning aligns embeddings across modalities. For an anchor spectrum embedding z,and
its matched molecule embedding z,,, the Information Noise Contrastive Estimation (InfoNCE) loss
is:

exp(sin(z,,z,)/7)
Y exp(sin(z,, z,,,)/ 7)’ (12)

k

’ClnfoNCE = _Iog

N
where sim(u, v) = %and Tis temperature. This formulation is consistent with contrastive

learning for mapping infrared spectra to molecular representations (SMEN).

(3)Joint training objective.

For a labeled downstream task loss L, (cross-entropy for classification or mean absolute error for
regression), the final objective is:

minH ‘Csup + a‘cMSM + ﬂ‘clnfoNCE + 7‘cfrings (13)

with nonnegative weights «, 3, y.
4. Experiments and Results
4.1. Dataset Collection and Evaluation Protocol

The experimental evaluation was conducted on a collected optoelectronic spectral dataset covering
multiple acquisition conditions and instrument settings. The dataset consisted of calibrated spectra
acquired under different illumination intensities and device configurations, enabling both in-domain
testing and cross-device generalization assessment. For the main classification task, four target
categories (denoted as C1-C4) were defined according to the downstream application requirements,
and the performance was reported using Accuracy and Macro-F1 to reflect both overall correctness
and class-balanced behavior. In addition to the standard train/test split under the same device, cross-
device experiments were designed using multiple train—test device pairs (Device-A, Device-B, and
Device-C) to evaluate robustness under instrument shift. To quantify label efficiency, progressively
smaller labeled subsets were used for fine-tuning (5%-100%), while keeping the same evaluation set
for consistent comparison.

4.2. Baselines, Implementation Settings, and Metrics

The proposed physics-guided self-supervised dual-stream Transformer was compared with
representative baselines spanning classical chemometrics-inspired learning and deep sequence
models, including RF+PCA, 1D-CNN, BiGRU, PatchTST, and a Vanilla Transformer backbone. The
proposed method adopted (i) physics-consistent preprocessing, (ii) dual-stream encoding with cross-
attention and gated fusion, and (iii) self-supervised pretraining followed by supervised fine-tuning.
Performance comparison was primarily summarized by Accuracy and Macro-F1. Beyond aggregate
metrics, the analysis further examined class-level confusion behavior, representation separability,
confidence calibration, robustness to illumination variation, and optimization stability during training.
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4.3. Overall Performance on the Collected Dataset

The overall comparison across baselines is summarized in Figure 1. Classical learning with
handcrafted reduction (RF+PCA) provided a solid reference but exhibited limited capacity to model
subtle long-range spectral dependencies. Deep sequence models (1D-CNN and BiGRU) improved
both Accuracy and Macro-F1, indicating benefits from hierarchical feature extraction and temporal-
style modeling on spectral sequences. Transformer-based baselines (PatchTST and Vanilla
Transformer) further improved performance, consistent with the advantage of attention mechanisms
for capturing long-range spectral interactions.
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Figure 1: Overall Performance Bar

The proposed dual-stream model achieved the best overall scores, reaching 0.923 Accuracy and
0.918 Macro-F1, outperforming the Vanilla Transformer baseline (0.898 Accuracy, 0.889 Macro-F1)
and PatchTST (0.892 Accuracy, 0.885 Macro-F1). The consistent gains in both metrics indicate that
combining complementary spectral views (dual stream) with adaptive fusion and physics-guided
learning improved not only raw correctness but also class-balanced reliability.

4.4. Cross-Device Generalization under Instrument Shift

Robustness under instrument shift is summarized in Figure 2, which reports Macro-F1 across
multiple train—test device pairs. As expected, the performance decreased when training and testing
devices differed (e.g., A—C and B—C) due to changes in spectral response, noise statistics, and
calibration characteristics. The Vanilla Transformer baseline showed a noticeable drop on cross-
device settings (e.g., 0.812 Macro-F1 on A—C), suggesting sensitivity to device-specific spectral
artifacts.
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Figure 2: CrossDevice Generalization Line
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The proposed method consistently improved cross-device Macro-F1 across all evaluated pairs,
including the most challenging shifts (e.g., 0.871 Macro-F1 on A—C). This behavior aligned with
the intended design: self-supervised pretraining improved representation transferability, while

physics-regularized objectives and fusion helped suppress nuisance variations that differed across
devices.

4.5. Label Efficiency and the Effect of Self-Supervised Pretraining

Label efficiency results are shown in Figure 3. Training from scratch displayed a typical trend:
performance improved as the labeled ratio increased, with a larger gap at low-label regimes. Self-
supervised pretraining provided substantial benefits when labels were scarce, achieving 0.78 Macro-
F1 at 10% labels compared with 0.70 for scratch training, and 0.84 Macro-F1 at 20% labels compared
with 0.78. Even at higher label ratios, pretraining remained beneficial, suggesting that the learned
spectral representations improved optimization and reduced overfitting to nuisance factors. These
results support the practical value of using unlabeled spectral archives to reduce annotation cost while
maintaining strong downstream performance.
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Figure 3: Label Efficiency Curve

4.6. Ablation Study on Key Components
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Figure 4: Ablation Study Bar

The contribution of major components is summarized in Figure 4. Removing physics
regularization caused a measurable decrease in Macro-F1 (from 0.918 to 0.902), indicating that the
physical consistency constraints helped stabilize learning under illumination variation and spectral
artifacts. Removing self-supervised pretraining produced a larger drop (to 0.887), confirming that
representation initialization from masked modeling and invariance learning was a major factor for
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both accuracy and robustness. Disabling cross-attention reduced Macro-F1 to 0.894, implying that
cross-stream interaction contributed meaningfully beyond simple concatenation or late fusion. Finally,
collapsing the architecture into a single stream further degraded performance (0.881), consistent with
the hypothesis that dual-view modeling improved the coverage of informative spectral cues under
varying conditions.

4.7. Diagnostic Analyses: Confusion, Calibration, Embeddings, Robustness, and Training
Dynamics

Class-level behavior is illustrated by the confusion matrix in Figure 5. The dominant mass was
concentrated on the diagonal entries, indicating stable recognition across all four categories. The
remaining confusions were concentrated in a few off-diagonal pairs, which is consistent with practical
spectral settings where adjacent classes share partially overlapping absorption or scattering
characteristics.
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Figure 5: Confusion Matrix

Model confidence quality was evaluated via the reliability diagram in Figure 6. The predicted
probabilities tracked empirical accuracy closely, yielding an expected calibration error (ECE) of
0.020, which indicates well-aligned confidence estimates. Such calibration is important in
optoelectronic deployments where uncertain predictions may trigger re-measurement or human

inspection.
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Figure 6: Reliability Diagram ECE
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Representation separability was visualized using a two-dimensional projection of learned
embeddings, as shown in Figure 7. The classes formed comparatively compact clusters with reduced
overlap, supporting the interpretation that the learned representation space preserved discriminative
structure and helped downstream decision boundaries remain stable.

4

Component 2
L
o
°
e
L ]
°

gl ° . P \: .‘:. ® 0
Y Se® ® -

2 op ‘- J:’.. go;e . :.' ce

e ClassCl ° é o0 L
Class C2 o '.* R ™ ‘
A e Class C3 oty B
B e Class C4 i P
-8 -6 -4 -2 0 2 4 6 8

Component 1

Figure 7: Embedding PCA Scatter

Robustness to illumination variation was examined by scaling illumination intensity, as shown in
Figure 8. The variant without illumination-consistency regularization exhibited larger performance
degradation at extreme scaling, whereas the physics-regularized setting maintained higher Macro-F1
across the full range (e.g., around 0.918 near nominal scaling and remaining comparatively stable
under over-/under-illumination). This result is consistent with the objective of physics-guided
constraints: reducing sensitivity to nuisance intensity scaling while preserving task-relevant spectral

signatures.
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Figure 8: Illumination Robustness Line

Finally, optimization stability was summarized by the training curves in Figure 9. Training and
validation losses decreased smoothly and converged without strong divergence, indicating stable

learning dynamics and limited overfitting under the adopted training strategy and regularization
scheme.
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Figure 9: Training Curves
5. Conclusions

This study developed a physics-guided self-supervised dual-stream Transformer framework for
robust optoelectronic spectral analytics under practical disturbances such as illumination variation,
measurement noise, and cross-device distribution shift. The overall design combined radiometric-
consistent preprocessing, patch-based Transformer encoding, cross-attention with gated fusion for
complementary-view aggregation, and self-supervised pretraining to reduce label dependence. In
addition, physics-regularized objectives were integrated to enhance invariance and improve out-of-
distribution stability.

Experimental results on collected optoelectronic spectral datasets demonstrated that the proposed
method achieved consistently superior Accuracy and Macro-F1 compared with representative
baselines, and delivered clear advantages in cross-device testing and low-label fine-tuning. Ablation
analyses further verified that self-supervised pretraining, physics regularization, and cross-stream
interaction each contributed materially to the observed improvements. Diagnostic evaluations,
including class-level confusion behavior, representation separability, probability calibration,
robustness to illumination scaling, and training dynamics, collectively supported the reliability and
deployability of the proposed approach.

Future work may extend the framework to broader optoelectronic modalities (e.g., spectral
imaging and multi-sensor fusion), incorporate more explicit physical forward models for instrument-
specific effects, and explore uncertainty-aware decision policies for closed-loop measurement and
quality control.
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