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Abstract: The balanced allocation of medical resources is a core measure to address the
issues of "difficulty in accessing medical care and high medical costs" and a key proposition
for advancing the Healthy China initiative. Traditional allocation models, which rely on
experiential decision-making and correlation analysis, struggle to accurately identify the
causal relationship between resource supply and health needs, resulting in insufficient
allocation efficiency and fairness. Centering on causal inference and robust optimization
theory, combined with the multi-dimensional enabling characteristics of big data technology,
this paper systematically reviews the construction logic and core methods of causal
optimization models for balanced medical resource allocation, as well as the implementation
path of a big data-driven robust decision support system. Following the logical framework
of "causal identification - model optimization - decision implementation”, the study analyzes
the adaptive scenarios of different causal models in resource allocation, explores the
application value of big data technology in enhancing decision robustness, and finally points
out the current research bottlenecks and future development directions. It aims to provide
theoretical references for the scientificization and precision of medical resource allocation.

1. Introduction

As the core of the public service system, the balanced allocation of medical resources is closely
related to national health rights and social equity. China faces prominent problems of insufficient
total medical resources and structural imbalance: high-quality resources are overly concentrated in
large hospitals in major cities, while grassroots and remote areas suffer from resource scarcity. This
forms a "siphon effect” and "service gap”, which not only reduces medical accessibility but also
exacerbates cost increases, hindering the advancement of the hierarchical medical system. Under the
Healthy China strategy, resource allocation urgently needs to shift from "scale expansion” to "quality
and structural optimization”, establishing a scientific model and data-driven decision system.
Traditional allocation relies on basic indicators such as population and geography or expert
experience, with obvious limitations: it only focuses on variable correlations rather than causality,
easily confuses "number of hospital visits" with "actual health needs", and ignores driving factors
such as aging; it has low tolerance for uncertainty, leading to passive decision-making in scenarios
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such as public health emergencies. In contrast, big data technology integrates multi-source data
including electronic health records, and when combined with causal optimization models and robust
decision theory, can achieve a leap from "data correlation” to "causal insight™, providing support for
solving these dilemmas. This paper focuses on core issues such as model construction and data fusion
to offer theoretical references for scientific decision-making.

2. Core Contradictions in Balanced Allocation of Medical Resources and the Need for Causal
Cognition

2.1 Analysis of Core Contradictions in Medical Resource Allocation

The core contradictions in China's medical resource allocation manifest in three aspects: structural
imbalance, low efficiency, and lack of fairness. Structural imbalance presents "three-dimensional
characteristics™: at the hierarchical level, tertiary hospitals concentrate over 40% of high-quality
resources, while grassroots institutions account for less than 20%, resulting in both "minor illnesses
treated in large hospitals” and idleness of grassroots resources; at the regional level, the number of
hospital beds per thousand people in eastern regions is 2.3 times that in western regions, with high-
quality resources aggregating in urban agglomerations; at the category level, specialized medical
resources are surplus, while public health resources are insufficient, disconnected from the disease
spectrum associated with aging. Efficiency issues stem from mismatches between supply and demand:
high-end equipment in large hospitals operates at less than 50% capacity yet outpatient services are
overloaded, while grassroots services only account for 35% of the national total. The root cause lies
in the failure to accurately identify the causal relationship between "resources and outcomes™ and
neglect of hidden factors such as the "siphon effect". The lack of fairness is reflected in disparities in
medical accessibility: the average distance to medical facilities in rural areas and waiting times for
high-quality services in central and western regions are several times those in cities. Traditional
allocation models fail to consider differentiated needs, leading to a disconnect between "formal
fairness™ and "substantive fairness" [1, 2, 3].

2.2 Core Value of Causal Cognition for Resource Allocation

The key to resolving contradictions in medical resource allocation lies in shifting from “correlation
analysis™ to "causal inference" to clarify the necessary connection between "causes” and "effects".
Correlation can only identify statistical associations—for example, "increased resource investment"
and "improved health levels" may both be influenced by economic development rather than direct
causality. In contrast, causal inference can isolate confounding factors, accurately identifying the net
effect of "resource investment" on "health outcomes" to inform decision-making. Its value is reflected
in three aspects: first, accurately locating demand targets—for instance, causal models can confirm
that unmet medical needs in rural western areas stem from resource scarcity, while insufficient
demand in urban communities in eastern regions results from weak health awareness, enabling
"allocation based on actual needs"; second, optimizing resource structure—through the causal chain
of "resources - diseases - health™, determining the optimal intervention effect of general practitioners
in chronic disease management to avoid mismatches; third, predicting policy effects—simulating the
impact of policies such as "increasing grassroots physician staffing" to proactively mitigate risks.

3. Construction Logic and Core Methods of Causal Optimization Models for Balanced
Allocation of Medical Resources

As an integration of causal inference and optimization theory, causal optimization models follow
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a core logic: first, identify the causal relationship between variables in medical resource allocation
through causal inference to clarify the net effect of "resource investment” on "health outcomes"; then,
it constructs an objective function with this causal relationship as a constraint, and solve for the
optimal allocation scheme. Based on different causal identification methods, these models are
classified into three types: those based on the potential outcomes framework, structural causal models,
and double/debiased machine learning.

3.1 Model Based on the Potential Outcomes Framework

The model based on the Potential Outcomes Framework (Rubin Causal Model, RCM) centers on
classic causal inference theory. It identifies causal effects by comparing potential outcome differences
between the "treatment group™ (regions/populations receiving resource investment) and the "control
group™ (regions/populations not receiving resource investment). In medical resource allocation,
"treatment™ typically refers to resource investment behaviors such as increasing the number of
hospital beds, while "outcomes” correspond to health outputs such as reduced morbidity. By
constructing counterfactual scenarios, the model addresses the core challenge of "being unable to
observe two treatment outcomes for the same subject simultaneously”. Model construction involves
three steps: first, defining variables—treatment variables quantify the intensity of resource investment
(e.g., increment in hospital beds per thousand people), while outcome variables consider both
efficiency and fairness (e.g., medical accessibility index); second, selecting methods such as
Propensity Score Matching (PSM) to construct the control group, controlling for confounding
variables such as economic level by matching samples with similar scores; third, integrating causal
effects and resource constraints to construct an objective function and solve for the optimal allocation
ratio. This model is suitable for comparative optimization of inter-regional resource allocation, with
advantages of clear causal logic, strong interpretability, low computational cost, and ease of practical
application. Its limitations include insufficient matching accuracy for continuous treatment variables,
difficulty in characterizing multi-factor interactions, and sensitivity to sample distribution [4, 5, 6].

3.2 Model Based on the Structural Causal Model

The model based on the Structural Causal Model (SCM) intuitively presents variable relationships
such as "economic level — resource investment — health outcomes" through causal graphs. It
effectively addresses multi-variable causal problems that are challenging for the potential outcomes
framework by simulating intervention effects using the Do-operator. Compared with the latter, SCM
focuses more on variable causal structures than sample matching, enabling clear identification of
direct and indirect causal effects to support precise allocation. The core of model construction lies in
causal graph drawing and intervention effect calculation: first, determining variables related to
resource supply (e.g., number of hospital beds), demand (e.g., morbidity), confounding factors (e.g.,
GDP), and outcomes (e.g., healthy life expectancy) based on literature and expert consensus, and
drawing causal graphs to clarify variable directions using domain knowledge; second, identifying
confounding paths through the backdoor/frontdoor criterion and adjusting for variables such as GDP
to eliminate interference; finally, constructing a multi-objective optimization model based on
intervention effects calculated by the Do-operator, maximizing health outcomes and fairness under
resource constraints. This model is adaptable to complex scenarios, capable of identifying the dual
effects of resource investment through multi-variable causal graphs and proposing efficient combined
schemes such as "transportation subsidies + grassroots resource investment". Its limitations include
reliance on expert experience for causal graph construction, increased difficulty in structure
identification with more variables, and high requirements for data quality.
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3.3 Model Based on Double/Debiased Machine Learning

The model based on Double/Debiased Machine Learning (DML) is an emerging method in recent
years. Its core is decomposing causal effect estimation into two independent machine learning tasks:
"outcome prediction” and "treatment assignment prediction”. It effectively addresses confounding
variable control in high-dimensional data, reducing the risk of model specification bias. Particularly
suitable for multi-source high-dimensional data scenarios in medical resource allocation, it breaks
through the "curse of dimensionality” bottleneck of traditional models. The model follows a
"debiasing + optimization" logic: in the first stage, using algorithms such as random forests and neural
networks to separately predict outcome variables (e.g., health outcomes) and treatment variables (e.g.,
resource investment), obtaining residual terms that eliminate the impact of confounding variables; in
the second stage, estimating causal effects free from interference through linear regression based on
these residuals; in the third stage, using this effect as a constraint to construct an objective function
for "cost minimization™ or "benefit maximization”, and solving for the optimal scheme using
algorithms such as integer programming. Relevant studies, based on multi-source provincial and
municipal data containing 87 feature variables, identified that general practitioners have a more
significant intervention effect on chronic disease management through DML. Based on this, a scheme
of "directing 70% of new physician staffing to general practice” was proposed, which can improve
chronic disease control rates and reduce costs. The model’s advantages include adaptability to high-
dimensional data, high accuracy in causal estimation, strong resistance to model misspecification,
and support for multi-resource type analysis. Its limitations are high model complexity, high
computational cost, weak result interpretability, and the need for maintenance by professional
algorithm personnel [7, 8].

3.4 Comparison and Adaptive Scenarios of the Three Models

Table 1: Comparison of Medical Resource Allocation Causal Optimization Models and Their

Applicable Scenarios

Model Type Theoretical Causal Identification Data Requirements | Core Advantages Main Limitations Adaptive Scenarios
Basis Method
Model based Rubin Sample matching Low Clear causal Insufficient Inter-regional
on the Potential | Causal methods such as dimensionality identification logic, matching accuracy resource allocation
Outcomes Model, Propensity Score (<20 dimensions), strong result for continuous comparison, single
Framework counterfactu Matching, entropy relatively balanced interpretability, low treatment variables, resource investment
al inference balancing, and sample computational cost, difficulty in effect evaluation,
theory Coarsened Exact distribution, easy practical characterizing multi- | decision scenarios
Matching (CEM) to observable application factor interactions, with simple data
control confounding confounding sensitivity to sample dimensions
variables variables distribution
Model based Pearl's causal | Constructin-g causal Causal Clear display of Reliance on expert Resource allocation
on the graph theory, graphs, identifying relationships multi-variable causal experience for under multi-factor
Structural Do operator confounding paths between variables structures, distinction causal graph interaction,
Causal Model intervention through backdoor/ can be defined between construction, scenarios requiring
theory frontdoor criteria, through domain direct/indirect effects, increased difficulty clear intervention
calculating direct/ knowledge, high support for precise in structure paths (e.g., analysis
indirect causal effects requirements for intervention strategy identification with of the "resource -
data integrity, design more variables, accessibility -
clear variable sensitivity to data health" chain)
association quality
directions required
Model based Machine Dual models predicting Supports high- Adaptability to high- High model Resource allocation
on Double/ learning outcome and treatment dimensional data dimensional big data complexity, high with multi-source
Debiased theory, variables separately, (=50 dimensions), scenarios, high computational cost, big data fusion,
Machine causal estimating causal handles multi-type accuracy in causal weak result multi-feature
Learning inference effects through residual feature variables, estimation, strong interpretability, need | scenarios such as
debiasing regression to isolate requires large resistance to model for maintenance by chronic disease
ideology high-dimensional sample size misspecification, professional management,
confounding impacts (>1000 samples) support for multi- algorithm personnel complex resource
resource type analysis combination
optimization
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There are significant differences among these three types of causal optimization models in terms
of their theoretical foundations, core advantages, and application scenarios. A comparative analysis
of these models is presented in Table 1.

4. Empowerment of Big Data for Causal Optimization Models and Construction of Robust
Decision Support Systems

The accuracy and practicality of causal optimization models depend on data support. The
development of big data technology provides "full-dimensional, real-time, and fine-grained" data
sources for the models. Meanwhile, through technologies such as data cleaning, feature engineering,
and uncertainty analysis, it enhances model robustness, constructing a closed-loop system of "data -
model - decision".

4.1 Big Data Sources and Feature Extraction for Medical Resource Allocation

Big data for medical resource allocation exhibits "multi-source and heterogeneous" characteristics,
mainly covering four categories: medical service data, medical insurance settlement data, public
health data, and socio-economic data. The realization of big data value relies on effective feature
extraction. Core features in medical resource allocation scenarios are divided into three types: demand
features, supply features, and correlation features. The key to feature extraction lies in "denoising"
and "dimensionality reduction"—processing noise through methods such as missing value imputation
and reducing dimensionality via techniques like principal component analysis to provide high-quality
inputs for causal optimization models.

4.2 Paths to Enhancing Robustness of Big Data-Driven Causal Optimization Models

Robustness refers to a model’s ability to maintain stable outputs under uncertainties such as data
noise, and is a core requirement for medical resource allocation decisions that need to respond to
unexpected situations like public health emergencies. Big data technology enhances model robustness
through "data augmentation”, “uncertainty quantification”, and "dynamic updating”. Data
augmentation expands the sample space—processing imbalanced samples from remote areas using
the SMOTE algorithm, or generating simulated data for scenarios such as sudden epidemics with
Generative Adversarial Networks (GANSs), and training the model with fused real data to reduce
overfitting risks. Uncertainty quantification identifies data uncertainties such as demand fluctuations
and model uncertainties such as causal effect estimation errors through methods like Monte Carlo
simulation and Bayesian inference, clarifying the confidence intervals of decision results to optimize
scheme stability. Dynamic updating relies on stream computing to process real-time data such as
medical services, monitoring allocation effects such as consultation rates, and updating model
parameters through online learning to realize a closed loop of "decision - implementation - feedback
- optimization". For example, a central hospital in a city shortened the response time for medical
resource allocation from 24 hours to 8 hours using this approach [9, 10].

4.3 Construction and Application of Big Data-Driven Robust Decision Support Systems

Based on causal optimization models and big data technology, a robust decision support system
for the balanced allocation of medical resources with four layers—"data layer, model layer, decision
layer, and feedback layer"—can be constructed to achieve full-process empowerment. The data layer
serves as the foundation: integrating multi-source data to build a data warehouse through data middle
platform technology, and completing processing such as cleaning and desensitization with data
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governance tools to break "data silos" and provide high-quality data services. The model layer is the
core, including causal identification and optimization solution modules: the former selects adaptive
models to estimate the causal effects of resource investment, while the latter constructs multi-
objective functions with these effects as constraints and solves for optimal schemes using intelligent
algorithms, with built-in modules to evaluate scheme stability. The decision layer is responsible for
result transformation: displaying allocation ratios through visualization platforms to provide
personalized support for different stakeholders, with integrated risk early warning functions. The
feedback layer ensures the closed loop: collecting real-time post-implementation data to evaluate
effects, and iterating the model by incorporating expert and public opinions. This system has been
applied in multiple regions: identifying causal effects through multi-source data and models,
proposing resource allocation schemes, which have increased grassroots consultation rates and
reduced cross-regional medical visits after implementation, demonstrating practical value.

5. Conclusion

The balanced allocation of medical resources is a core path to achieving health equity, and the
integration of causal optimization models with big data technology provides a scientific tool for
addressing resource imbalance dilemmas. This review shows that the potential outcomes framework
is suitable for causal identification in simple scenarios, the structural causal model excels in analyzing
complex causal structures, and double/debiased machine learning performs prominently in high-
dimensional data. Big data ensures model accuracy and practicality through empowerment, efficiency
improvement, and dynamic updating, constructing a "data - model - decision - feedback" closed loop
that shifts allocation from "experience-driven" to "data and model dual-driven". Current research still
faces bottlenecks such as complex causal identification, insufficient data quality, and disconnection
between models and practice. Future efforts need to break these limitations through technological
innovation. With the development of related technologies, decision-making for medical resource
allocation will become more accurate and efficient, providing guarantees for the Healthy China
initiative and helping to achieve the goal of "universal access to equitable and high-quality medical
services".

References

[1] Dai T, Yuan J, Dai K, et al. Unequilibrium evolution and driving mechanism of medical resource allocation: An
empirical study based on the SBM-Dagum model[J]. Health Economics Research, 2025, 42(09): 48-52+57.

[2] Atento R G, Quinto L, Espelita C A M, et al. Integrating Business and Health Analytics: A Conceptual Framework
for Dual Outcomes in Healthcare[J]. International Journal of Health & Business Analytics, 2025, 1(1).

[3] Keya K N, Islam R, Pan S, et al. Equitable allocation of healthcare resources with fair survival models
[C]//Proceedings of the 2021 SIAM International Conference on Data Mining (SDM). Society for Industrial and Applied
Mathematics, 2021: 190-198.

[4] Zhang C. Equitable resource allocation in health emergencies: addressing racial disparities and ethical dilemmas|[J].
Journal of Medical Ethics, 2024.

[5] LiuY, Zhao Y, Chen S, et al. Research on the allocation of medical resources and service utilization in TCM hospitals
in China based on the coupling coordination model[J]. Modern Preventive Medicine, 2024, 51(22): 4147-4152, 4158.
[6] Martinez S, Al-Mansoori N. Optimizing Resource Distribution in Healthcare: A Framework for Equitable Allocation
[J]. Nvpubhouse Library for Journal of Social Sciences and Humanities Research Fundamentals, 2025, 5(08): 1-13.

[7] Sun Y, Wu S, Cao Z. Research on regional differences and spatiotemporal evolution of the fairness of high-quality
medical resource allocation in China[J]. Chinese Hospitals, 2024, 28(12): 29-35.

[8] LiJ, Wu'Y, Lu Y. Analysis of medical resources for allocation equity using traditional Chinese medicine resource as
a model[J]. The International Journal of Health Planning and Management, 2022, 37(6): 3205-3217.

[9] Zhang Q, Ouyang Y. Research on the coupling coordination relationship between China's multi-level medical security
and medical resource allocation[J]. Chinese Journal of Health Policy, 2025, 18(09): 48-56.

[10] Li G, Feng C, Zhang T, et al. Spatially Equitable Allocation of Medical Resources for Pandemic Containment: A
Service Level-Based Approach[J]. Transportation Research Record, 2025: 03611981251359295.

169





