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Abstract: The balanced allocation of medical resources is a core measure to address the 

issues of "difficulty in accessing medical care and high medical costs" and a key proposition 

for advancing the Healthy China initiative. Traditional allocation models, which rely on 

experiential decision-making and correlation analysis, struggle to accurately identify the 

causal relationship between resource supply and health needs, resulting in insufficient 

allocation efficiency and fairness. Centering on causal inference and robust optimization 

theory, combined with the multi-dimensional enabling characteristics of big data technology, 

this paper systematically reviews the construction logic and core methods of causal 

optimization models for balanced medical resource allocation, as well as the implementation 

path of a big data-driven robust decision support system. Following the logical framework 

of "causal identification - model optimization - decision implementation", the study analyzes 

the adaptive scenarios of different causal models in resource allocation, explores the 

application value of big data technology in enhancing decision robustness, and finally points 

out the current research bottlenecks and future development directions. It aims to provide 

theoretical references for the scientificization and precision of medical resource allocation.   

1. Introduction 

As the core of the public service system, the balanced allocation of medical resources is closely 

related to national health rights and social equity. China faces prominent problems of insufficient 

total medical resources and structural imbalance: high-quality resources are overly concentrated in 

large hospitals in major cities, while grassroots and remote areas suffer from resource scarcity. This 

forms a "siphon effect" and "service gap", which not only reduces medical accessibility but also 

exacerbates cost increases, hindering the advancement of the hierarchical medical system. Under the 

Healthy China strategy, resource allocation urgently needs to shift from "scale expansion" to "quality 

and structural optimization", establishing a scientific model and data-driven decision system. 

Traditional allocation relies on basic indicators such as population and geography or expert 

experience, with obvious limitations: it only focuses on variable correlations rather than causality, 

easily confuses "number of hospital visits" with "actual health needs", and ignores driving factors 

such as aging; it has low tolerance for uncertainty, leading to passive decision-making in scenarios 
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such as public health emergencies. In contrast, big data technology integrates multi-source data 

including electronic health records, and when combined with causal optimization models and robust 

decision theory, can achieve a leap from "data correlation" to "causal insight", providing support for 

solving these dilemmas. This paper focuses on core issues such as model construction and data fusion 

to offer theoretical references for scientific decision-making.   

2. Core Contradictions in Balanced Allocation of Medical Resources and the Need for Causal 

Cognition 

2.1 Analysis of Core Contradictions in Medical Resource Allocation 

The core contradictions in China's medical resource allocation manifest in three aspects: structural 

imbalance, low efficiency, and lack of fairness. Structural imbalance presents "three-dimensional 

characteristics": at the hierarchical level, tertiary hospitals concentrate over 40% of high-quality 

resources, while grassroots institutions account for less than 20%, resulting in both "minor illnesses 

treated in large hospitals" and idleness of grassroots resources; at the regional level, the number of 

hospital beds per thousand people in eastern regions is 2.3 times that in western regions, with high-

quality resources aggregating in urban agglomerations; at the category level, specialized medical 

resources are surplus, while public health resources are insufficient, disconnected from the disease 

spectrum associated with aging. Efficiency issues stem from mismatches between supply and demand: 

high-end equipment in large hospitals operates at less than 50% capacity yet outpatient services are 

overloaded, while grassroots services only account for 35% of the national total. The root cause lies 

in the failure to accurately identify the causal relationship between "resources and outcomes" and 

neglect of hidden factors such as the "siphon effect". The lack of fairness is reflected in disparities in 

medical accessibility: the average distance to medical facilities in rural areas and waiting times for 

high-quality services in central and western regions are several times those in cities. Traditional 

allocation models fail to consider differentiated needs, leading to a disconnect between "formal 

fairness" and "substantive fairness" [1, 2, 3].   

2.2 Core Value of Causal Cognition for Resource Allocation 

The key to resolving contradictions in medical resource allocation lies in shifting from "correlation 

analysis" to "causal inference" to clarify the necessary connection between "causes" and "effects". 

Correlation can only identify statistical associations—for example, "increased resource investment" 

and "improved health levels" may both be influenced by economic development rather than direct 

causality. In contrast, causal inference can isolate confounding factors, accurately identifying the net 

effect of "resource investment" on "health outcomes" to inform decision-making. Its value is reflected 

in three aspects: first, accurately locating demand targets—for instance, causal models can confirm 

that unmet medical needs in rural western areas stem from resource scarcity, while insufficient 

demand in urban communities in eastern regions results from weak health awareness, enabling 

"allocation based on actual needs"; second, optimizing resource structure—through the causal chain 

of "resources - diseases - health", determining the optimal intervention effect of general practitioners 

in chronic disease management to avoid mismatches; third, predicting policy effects—simulating the 

impact of policies such as "increasing grassroots physician staffing" to proactively mitigate risks.   

3. Construction Logic and Core Methods of Causal Optimization Models for Balanced 

Allocation of Medical Resources 

As an integration of causal inference and optimization theory, causal optimization models follow 
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a core logic: first, identify the causal relationship between variables in medical resource allocation 

through causal inference to clarify the net effect of "resource investment" on "health outcomes"; then, 

it constructs an objective function with this causal relationship as a constraint, and solve for the 

optimal allocation scheme. Based on different causal identification methods, these models are 

classified into three types: those based on the potential outcomes framework, structural causal models, 

and double/debiased machine learning.   

3.1 Model Based on the Potential Outcomes Framework 

The model based on the Potential Outcomes Framework (Rubin Causal Model, RCM) centers on 

classic causal inference theory. It identifies causal effects by comparing potential outcome differences 

between the "treatment group" (regions/populations receiving resource investment) and the "control 

group" (regions/populations not receiving resource investment). In medical resource allocation, 

"treatment" typically refers to resource investment behaviors such as increasing the number of 

hospital beds, while "outcomes" correspond to health outputs such as reduced morbidity. By 

constructing counterfactual scenarios, the model addresses the core challenge of "being unable to 

observe two treatment outcomes for the same subject simultaneously". Model construction involves 

three steps: first, defining variables—treatment variables quantify the intensity of resource investment 

(e.g., increment in hospital beds per thousand people), while outcome variables consider both 

efficiency and fairness (e.g., medical accessibility index); second, selecting methods such as 

Propensity Score Matching (PSM) to construct the control group, controlling for confounding 

variables such as economic level by matching samples with similar scores; third, integrating causal 

effects and resource constraints to construct an objective function and solve for the optimal allocation 

ratio. This model is suitable for comparative optimization of inter-regional resource allocation, with 

advantages of clear causal logic, strong interpretability, low computational cost, and ease of practical 

application. Its limitations include insufficient matching accuracy for continuous treatment variables, 

difficulty in characterizing multi-factor interactions, and sensitivity to sample distribution [4, 5, 6].   

3.2 Model Based on the Structural Causal Model 

The model based on the Structural Causal Model (SCM) intuitively presents variable relationships 

such as "economic level → resource investment → health outcomes" through causal graphs. It 

effectively addresses multi-variable causal problems that are challenging for the potential outcomes 

framework by simulating intervention effects using the Do-operator. Compared with the latter, SCM 

focuses more on variable causal structures than sample matching, enabling clear identification of 

direct and indirect causal effects to support precise allocation. The core of model construction lies in 

causal graph drawing and intervention effect calculation: first, determining variables related to 

resource supply (e.g., number of hospital beds), demand (e.g., morbidity), confounding factors (e.g., 

GDP), and outcomes (e.g., healthy life expectancy) based on literature and expert consensus, and 

drawing causal graphs to clarify variable directions using domain knowledge; second, identifying 

confounding paths through the backdoor/frontdoor criterion and adjusting for variables such as GDP 

to eliminate interference; finally, constructing a multi-objective optimization model based on 

intervention effects calculated by the Do-operator, maximizing health outcomes and fairness under 

resource constraints. This model is adaptable to complex scenarios, capable of identifying the dual 

effects of resource investment through multi-variable causal graphs and proposing efficient combined 

schemes such as "transportation subsidies + grassroots resource investment". Its limitations include 

reliance on expert experience for causal graph construction, increased difficulty in structure 

identification with more variables, and high requirements for data quality.   
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3.3 Model Based on Double/Debiased Machine Learning 

The model based on Double/Debiased Machine Learning (DML) is an emerging method in recent 

years. Its core is decomposing causal effect estimation into two independent machine learning tasks: 

"outcome prediction" and "treatment assignment prediction". It effectively addresses confounding 

variable control in high-dimensional data, reducing the risk of model specification bias. Particularly 

suitable for multi-source high-dimensional data scenarios in medical resource allocation, it breaks 

through the "curse of dimensionality" bottleneck of traditional models. The model follows a 

"debiasing + optimization" logic: in the first stage, using algorithms such as random forests and neural 

networks to separately predict outcome variables (e.g., health outcomes) and treatment variables (e.g., 

resource investment), obtaining residual terms that eliminate the impact of confounding variables; in 

the second stage, estimating causal effects free from interference through linear regression based on 

these residuals; in the third stage, using this effect as a constraint to construct an objective function 

for "cost minimization" or "benefit maximization", and solving for the optimal scheme using 

algorithms such as integer programming. Relevant studies, based on multi-source provincial and 

municipal data containing 87 feature variables, identified that general practitioners have a more 

significant intervention effect on chronic disease management through DML. Based on this, a scheme 

of "directing 70% of new physician staffing to general practice" was proposed, which can improve 

chronic disease control rates and reduce costs. The model’s advantages include adaptability to high-

dimensional data, high accuracy in causal estimation, strong resistance to model misspecification, 

and support for multi-resource type analysis. Its limitations are high model complexity, high 

computational cost, weak result interpretability, and the need for maintenance by professional 

algorithm personnel [7, 8].   

3.4 Comparison and Adaptive Scenarios of the Three Models 

Table 1: Comparison of Medical Resource Allocation Causal Optimization Models and Their 

Applicable Scenarios 

Model Type Theoretical 

Basis 

Causal Identification 

Method 

Data Requirements Core Advantages Main Limitations Adaptive Scenarios 

Model based 

on the Potential 

Outcomes 

Framework 

Rubin 

Causal 

Model, 

counterfactu

al inference 

theory 

Sample matching 

methods such as 

Propensity Score 

Matching, entropy 

balancing, and 

Coarsened Exact 

Matching (CEM) to 

control confounding 

variables 

Low 

dimensionality 

(≤20 dimensions), 

relatively balanced 

sample 

distribution, 

observable 

confounding 

variables 

Clear causal 

identification logic, 

strong result 

interpretability, low 

computational cost, 

easy practical 

application 

Insufficient 

matching accuracy 

for continuous 

treatment variables, 

difficulty in 

characterizing multi-

factor interactions, 

sensitivity to sample 

distribution 

Inter-regional 

resource allocation 

comparison, single 

resource investment 

effect evaluation, 

decision scenarios 

with simple data 

dimensions 

Model based 

on the 

Structural 

Causal Model 

Pearl's causal 

graph theory, 

Do operator 

intervention 

theory 

Constructin-g causal 

graphs, identifying 

confounding paths 

through backdoor/ 

frontdoor criteria, 

calculating direct/ 

indirect causal effects 

Causal 

relationships 

between variables 

can be defined 

through domain 

knowledge, high 

requirements for 

data integrity, 

clear variable 

association 

directions required 

Clear display of 

multi-variable causal 

structures, distinction 

between 

direct/indirect effects, 

support for precise 

intervention strategy 

design 

Reliance on expert 

experience for 

causal graph 

construction, 

increased difficulty 

in structure 

identification with 

more variables, 

sensitivity to data 

quality 

Resource allocation 

under multi-factor 

interaction, 

scenarios requiring 

clear intervention 

paths (e.g., analysis 

of the "resource - 

accessibility - 

health" chain) 

Model based 

on Double/ 

Debiased 

Machine 

Learning 

Machine 

learning 

theory, 

causal 

inference 

debiasing 

ideology 

Dual models predicting 

outcome and treatment 

variables separately, 

estimating causal 

effects through residual 

regression to isolate 

high-dimensional 

confounding impacts 

Supports high-

dimensional data 

(≥50 dimensions), 

handles multi-type 

feature variables, 

requires large 

sample size 

(≥1000 samples) 

Adaptability to high-

dimensional big data 

scenarios, high 

accuracy in causal 

estimation, strong 

resistance to model 

misspecification, 

support for multi-

resource type analysis 

High model 

complexity, high 

computational cost, 

weak result 

interpretability, need 

for maintenance by 

professional 

algorithm personnel 

Resource allocation 

with multi-source 

big data fusion, 

multi-feature 

scenarios such as 

chronic disease 

management, 

complex resource 

combination 

optimization 
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There are significant differences among these three types of causal optimization models in terms 

of their theoretical foundations, core advantages, and application scenarios. A comparative analysis 

of these models is presented in Table 1.   

4. Empowerment of Big Data for Causal Optimization Models and Construction of Robust 

Decision Support Systems 

The accuracy and practicality of causal optimization models depend on data support. The 

development of big data technology provides "full-dimensional, real-time, and fine-grained" data 

sources for the models. Meanwhile, through technologies such as data cleaning, feature engineering, 

and uncertainty analysis, it enhances model robustness, constructing a closed-loop system of "data - 

model - decision".   

4.1 Big Data Sources and Feature Extraction for Medical Resource Allocation 

Big data for medical resource allocation exhibits "multi-source and heterogeneous" characteristics, 

mainly covering four categories: medical service data, medical insurance settlement data, public 

health data, and socio-economic data. The realization of big data value relies on effective feature 

extraction. Core features in medical resource allocation scenarios are divided into three types: demand 

features, supply features, and correlation features. The key to feature extraction lies in "denoising" 

and "dimensionality reduction"—processing noise through methods such as missing value imputation 

and reducing dimensionality via techniques like principal component analysis to provide high-quality 

inputs for causal optimization models.   

4.2 Paths to Enhancing Robustness of Big Data-Driven Causal Optimization Models 

Robustness refers to a model’s ability to maintain stable outputs under uncertainties such as data 

noise, and is a core requirement for medical resource allocation decisions that need to respond to 

unexpected situations like public health emergencies. Big data technology enhances model robustness 

through "data augmentation", "uncertainty quantification", and "dynamic updating". Data 

augmentation expands the sample space—processing imbalanced samples from remote areas using 

the SMOTE algorithm, or generating simulated data for scenarios such as sudden epidemics with 

Generative Adversarial Networks (GANs), and training the model with fused real data to reduce 

overfitting risks. Uncertainty quantification identifies data uncertainties such as demand fluctuations 

and model uncertainties such as causal effect estimation errors through methods like Monte Carlo 

simulation and Bayesian inference, clarifying the confidence intervals of decision results to optimize 

scheme stability. Dynamic updating relies on stream computing to process real-time data such as 

medical services, monitoring allocation effects such as consultation rates, and updating model 

parameters through online learning to realize a closed loop of "decision - implementation - feedback 

- optimization". For example, a central hospital in a city shortened the response time for medical 

resource allocation from 24 hours to 8 hours using this approach [9, 10].   

4.3 Construction and Application of Big Data-Driven Robust Decision Support Systems 

Based on causal optimization models and big data technology, a robust decision support system 

for the balanced allocation of medical resources with four layers—"data layer, model layer, decision 

layer, and feedback layer"—can be constructed to achieve full-process empowerment. The data layer 

serves as the foundation: integrating multi-source data to build a data warehouse through data middle 

platform technology, and completing processing such as cleaning and desensitization with data 

168



governance tools to break "data silos" and provide high-quality data services. The model layer is the 

core, including causal identification and optimization solution modules: the former selects adaptive 

models to estimate the causal effects of resource investment, while the latter constructs multi-

objective functions with these effects as constraints and solves for optimal schemes using intelligent 

algorithms, with built-in modules to evaluate scheme stability. The decision layer is responsible for 

result transformation: displaying allocation ratios through visualization platforms to provide 

personalized support for different stakeholders, with integrated risk early warning functions. The 

feedback layer ensures the closed loop: collecting real-time post-implementation data to evaluate 

effects, and iterating the model by incorporating expert and public opinions. This system has been 

applied in multiple regions: identifying causal effects through multi-source data and models, 

proposing resource allocation schemes, which have increased grassroots consultation rates and 

reduced cross-regional medical visits after implementation, demonstrating practical value.   

5. Conclusion 

The balanced allocation of medical resources is a core path to achieving health equity, and the 

integration of causal optimization models with big data technology provides a scientific tool for 

addressing resource imbalance dilemmas. This review shows that the potential outcomes framework 

is suitable for causal identification in simple scenarios, the structural causal model excels in analyzing 

complex causal structures, and double/debiased machine learning performs prominently in high-

dimensional data. Big data ensures model accuracy and practicality through empowerment, efficiency 

improvement, and dynamic updating, constructing a "data - model - decision - feedback" closed loop 

that shifts allocation from "experience-driven" to "data and model dual-driven". Current research still 

faces bottlenecks such as complex causal identification, insufficient data quality, and disconnection 

between models and practice. Future efforts need to break these limitations through technological 

innovation. With the development of related technologies, decision-making for medical resource 

allocation will become more accurate and efficient, providing guarantees for the Healthy China 

initiative and helping to achieve the goal of "universal access to equitable and high-quality medical 

services".   
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