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Abstract: Managing real-time road conditions and satisfying stochastic customer demands 

pose significant challenges for optimizing the Dynamic Vehicle Routing Problem with 

Stochastic Requests (DVRPSR) in urban grocery delivery settings. Most existing 

approaches generate solutions offline as static plans, which are only applicable to the 

specific scenarios they were optimized for, making it difficult to efficiently plan and operate 

a dynamic urban grocery delivery system for last-mile delivery. In this study, we introduce 

a new dynamic optimization model for DVRPSR. Our approach combines a multi-attention 

mechanism with reinforcement learning and incorporates a customer point update strategy 

to enhance efficiency in urban E-grocery delivery. To validate the effectiveness of our 

method, we conducted experiments across small (50 customers and 5 vehicles), medium 

(100 customers and 10 vehicles), and large (200 customers and 20 vehicles) data scales. The 

results demonstrate that our method outperforms current routing methods, reducing total 

path length, improving customer service coverage, and maintaining efficient computation 

time. This provides a promising strategy for enhancing the efficiency of urban E-grocery 

delivery and reducing operational costs. 

1. Introduction 

With the dramatic growth of urban E-grocery delivery during the pandemic, the competitive 

battleground has shifted to focus on speed and user experience, particularly for immediate and 

unplanned needs. The main challenge in urban grocery delivery is meeting dynamic and unpredictable 

customer demands while maintaining timely and efficient service. The Dynamic Vehicle Routing 

Problem with Stochastic Requests (DVRPSR) is a critical issue in this sector, significantly impacting 

both efficiency and customer satisfaction. 

The conventional Vehicle Routing Problem (VRP) faces difficulties in dynamic situations due to 

rising unpredictability and constantly changing client needs. While most previous studies on 

DVRPSR concentrate on real-time routing changes, they often rely on stationary assumptions and do 

not adequately address the intrinsic complexity and unpredictability of E-grocery delivery [1, 2]. In 
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practical urban E-grocery routing, some requests (static requests) are known in advance, while others 

(dynamic requests) appear randomly during service. Therefore, we need a model capable of quickly 

reacting and adjusting to order changes. Unfortunately, many of the current models fail to adequately 

depict the dynamic and varied character of real-world situations [3-5]. Most existing approaches for 

DVRPSR still depend on heuristics that define operators handy to guide the random exploration of 

the solution space, which hindering efficient online decision-making.  

This research aims to develop new model of DVRPSR to assign an initial route plan to delivery 

vehicles and dynamically modify the routes depending on developing needs simultaneously, to satisfy 

as many client requests as possible and thereby reduce the delivery cost. Reinforcement Learning 

(RL) offers new insight to handle the dynamic flexibility needed in current routing difficulties [6-8]. 

However, these methods often face challenges with scalability and computational efficiency, 

especially when dealing with complex and large-scale problems. Consequently, integrating RL with 

advanced techniques, such as deep neural networks become essential to improve performance and 

applicability in real-world scenarios. Notably, the combination of multi-head attention mechanisms 

from natural language processing with reinforcement learning is particularly promising[9]. This 

approach enhances feature identification and dynamic route optimization by providing insights into 

the interdependencies and relationships between various input features.  

Consequently, in this work we aim to develop a new dynamic vehicle routing optimization based 

on the Markov Decision Processes (MDPs), which see the ideal solution as a succession of strategic 

choices. This allows us to use reinforcement learning to find near-optimal solutions by increasing the 

probability of decoding the "ideal" sequence. Furthermore, given that dynamic features cannot be 

adequately extracted for optimal dynamic path optimization using reinforcement learning alone, the 

introduction of the multi-attention mechanism allows our model to effectively explore the 

dependencies and relationships between input features, thus lead to the main following contributions 

of this paper: 

· We propose a new model combining a multi-attention mechanism with reinforcement learning 

(MA-RL) to address the DVRPSR. This model optimizes both offline and online decisions for 

scheduling dynamic requests, providing a comprehensive solution for initial route planning and real-

time adjustments. 

· We employ a real-time update strategy for customer requests in sovling the DVRPSR, enabling 

dynamic adjustments to the delivery route. By continually adapting to fluctuating demand, this 

strategy ensures optimal routing and efficient delivery, which are essential for maintaining service 

quality and operational agility in fast-paced market conditions. 

· The model's performance is rigorously tested through artificial benchmarks, coving a range of 

scenarios from small to large-scale. This thorough testing demonstrates the model's adaptability and 

consistent effectiveness, confirming its capability to handle diverse operational scales and complex 

scenarios. The results validate the model's utility and robustness in real-world applications. 

2. Literature Review 

VRP has long been a fundamental concern in logistics and transportation research, focusing on 

decreasing travel times and costs while satisfying customer needs. Historically, vehicle routing 

problems have been approached with fixed assumptions, starting with the innovative method 

proposed by Dantzig and Ramser in 1959 and evolving through modifications such as the Time-

Windowed VRP (VRPTW) and the Capacitated VRP (CVRP). These presumptions are predicated on 

the belief that, during route planning, key variables such as customer addresses, demand levels, and 

traffic conditions are static and unchangeable [10-12]. However, traditional models show major flaws 

in terms of adaptation to changing conditions and uncertainty. This is particularly true for E-grocery 
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delivery, where consumer demand can fluctuate wildly and traffic patterns can change quickly. To 

address these challenges, recent research focuses on solving the Dynamic Vehicle Routing Problem 

(DVRP), which is designed to manage the dynamic nature of e-grocery delivery and align static 

scheduling with the needs of real-time delivery. DVRP allows for instantaneous route adjustment to 

manage on-demand order integration, moving beyond predefined planning assumptions. Grocery 

stores must be able to react fast for quick changes and fine-tune delivery routes to satisfy consumer 

needs. To address this real-world challenge, DVRP was introduced in the late 1970s [13,14]. Psaraftis 

(1988) investigate the quick route adjustments in response to new data, urgent needs, or vital events 

[15]. Since then, the extensive body of literature on DVRP justifies the numerous reviews dedicated 

to this problem [16-18]. Recently, DVRPSR have garnered growing interest [19]. Many methods 

within the Multiple Scenario Approach (MSA) framework still depend on tools and heuristics 

designed for static variants, creating sets of anticipatory plans that are updated or discarded in 

response to dynamic events. However, current DVRPSR models remain inadequate for managing the 

complexity of frequent order changes in E-grocery deliveries [20,21]. 

Pointer Networks paved the way for generalized solutions to combinatorial problems using 

Recurrent Neural Networks (RNNs) [22]. Reinforcement Learning (RL), which primarily focuses on 

rewards and penalties, is a strong technique in machine learning that enhances decision-making by 

examining the results of actions. RL is particularly effective in adapting to changing conditions and  

addressing the complexity of VRP [23]. By modeling and optimizing route planning strategies via 

experimentation and iterative improvements, RL can adapt to rapidly changing delivery needs and 

fluctuating road conditions [24,25]. These research studies leverage the generalization capability of 

artificial intelligence to develop vehicle routes with satisfactory performance.  However, few studies 

have attempted to employ machine learning-based methods to solve VRPs with stochastic demand. 

Tackling this type of problem requires achieving high-quality solutions with acceptable 

computational effort. 

Recent advances in deep learning's multi-head attention mechanisms have significantly increased 

data processing efficiency. Proposed by Vaswani and his colleagues for the transformer model 

architecture [26],this design allows the simultaneous processing of multiple data segments. This 

enables the model to attend multiple points along the input stream concurrently. This parallel 

processing capability greatly enhances the model’s ability to compile comprehensive data from 

multiple angles [27].Therefore, Multi-head attention approaches can be highly beneficial in the field 

of E-grocery delivery by fully analyzing and understanding the intricate spatial and temporal 

relationships between consumer locations and their needs. These techniques can simplify real delivery 

routes, hence improving delivery performance and customer service quality.  

3. Methodology 

3.1 Problem Definition 

In the realm of E-grocery delivery, a primary difficulty in addressing the DVRPSR lies in adeptly 

handling fluctuating demands in real-time while maintaining efficiency and cost-effectiveness. In this 

study, we define the DVRPSR as follows: Devlivey vehicles pick up groceries from a distribution 

center and travel to a depot. Deliveries start and end from a depot to address customer demands that 

arise unpredictably over a specified timeframe (a half-day). These requests can be categorized into 

two types: (i) deterministic requests known before leaving the depot; and (ii) random requests that 

occur with a certain probability after leaving the depot. The location of each customer is known, and 

it is assumed that all requests must be accepted and serviced by vehicles. 
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3.2 Formulation of the Model 

The network of DVRPSR is comprised of a set of nodes 𝑁, a set of arcs 𝐴, and a set of vehicles 𝐾. 

The set of nodes 𝑁 is further divided into two subsets: depot（𝑂）and customers（𝐹）, denoted as 

𝑁 = 𝑂 ∪  𝐹. The demand of each customer 𝑓 ∈ 𝐹 is defined by the required weight of goods 𝑢𝑔 (kg). 

The probability of sending a request 𝑃𝑓follows a binomial delivery with 𝐾 trials, and the probability 

of a new request occurring in period 𝑘 ∈ 𝐾  is calculated as𝑃𝑓𝑘 =  1 − √1 − 𝑃𝑓 𝑘  . The maximum 

payload of a vehicle is 𝑈 (kg), and the empty vehicle (curb) weight is 𝑊 (kg). 

The specific model parameters and variables are shown in Table 1. 

TABLE 1 Notations of variables and parameters 

Sets 

O Set of depot  

F Set of customers, F = {𝐹𝑛 ∪ 𝐹𝑐  ∪ 𝐹ℎ ∪ 𝐹ℎ−1 ∪ 𝐹𝑎 ∪ 𝐹𝑢} 
𝐹𝑛 Set of new customers after dynamic update 

𝐹𝑐 Set of initial customers 

𝐹ℎ Set of having been serviced customers when dynamically updated 

𝐹ℎ−1 Set of having just been serviced customers during this dynamic update 

𝐹𝑎 Set of having not been serviced customers after dynamically updated  

𝐹𝑢 Set of customers that are being serviced 

𝑁 Node set consist of {𝑂 ∪ 𝐹 } 

𝐾 Set of Vehicles visiting the 𝐹, 𝐾 = {𝐾𝑖 ∪ 𝐾𝑛  ∪ 𝐾ℎ  ∪ 𝐾𝑎 ∪ 𝐾𝑤 ∪ 𝐾𝑜} 

𝐾𝑖 Set of initial Vehicles visiting the 𝐹 

𝐾𝑛 Set of newly dispatched Vehicles visiting the 𝐹 after the dynamic update 

𝐾ℎ Set of Vehicles had completed delivery at the time of the dynamic update 

𝐾𝑎 Set of Vehicles visiting the 𝐹 in delivery after dynamic update 

𝐾𝑤 Set of Vehicles visiting the 𝐹that are not at the customer's point at the time of the dynamic update 

𝐾𝑜 Set of Vehicles visiting the 𝐹 that are at the customer's point at the time of the dynamic update 

Deterministic parameters 

fc Fixed cost of dispatch 

wc Cost of waiting for early arrival 

pc Penalty costs for late arrival of vehicles 

c Consumption cost per unit mile traveled by Vehicles 

𝑑𝑓 Demand of customer f, 𝑓 ∈ 𝐹 

𝑑𝑖𝑗 Distance needed to travel on arc (i, j) 
𝑑𝑖𝑜 Distance from customer point to depot 

𝑄𝑣𝑎𝑛 Capacity of Vehicles 

𝑄𝑘
𝑣𝑎𝑛 Remaining capacity of Vehicle k responding to dynamic update, 𝑘 ∈ 𝐾 

v Speed of Vehicles 

𝜛 Service stop time of the depot 

Stochastic parameters 

𝜌𝑓𝑖𝑓𝑗
 Time needed to travel from customer 𝑓𝑖 to customer 𝑓𝑗 , 𝑓𝑖 , 𝑓𝑗 ∈ 𝐹 

𝑆𝑓𝑘 Vehicle Vehicle k arrives at customer 𝑓 service time, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 

𝑇𝑚𝑎𝑥 the maximum allowable time for a Vehicle's route 

Auxiliary variables 

𝑇1 Point of commencement of delivery  

𝑇2 Point of acceptance of dynamic requirements 

𝑇𝑓𝑘 Vehicle k starts service at the customer f,𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 

𝑡0 Intervals for dynamic updating of requirements 

𝐿𝑇𝑓 Latest time for client 𝑓 to receive services, 𝑓 ∈ 𝐹 

𝐸𝑇𝑓 Earliest time client 𝑓 receives service, 𝑓 ∈ 𝐹 

𝑎𝑓 The moment the Vehicle leaves the customer 𝑓, 𝑓 ∈ 𝐹 

𝑡𝑓𝑘 The moment the Vehicle k arrives at the customer 𝑓, 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾 

𝑇𝑓𝑘
𝑣𝑎𝑛 Visit time at node 𝑓 by vehicle 𝑘, 𝑓 ∈ 𝐹 

Decision variables 

𝑦𝑙 {1，if Decision − making on the dispatch of new vehicles 

0, otherwise 
 

𝑦𝑙𝑤 {
1, if  Decision − making vehicles on their way to delivery

0, otherwise 
 

𝑦𝑙𝑜 {
1, if Decision − making vehicles at the point of customer 

0, otherwise 
 

𝑋𝑓𝑜 {
1, if customer 𝑓 𝑏𝑎𝑐𝑘 𝑡𝑜 𝑑𝑒𝑝𝑜𝑡  served by 𝑣𝑎𝑛 𝑘, 𝑘 ∈ 𝐾, 𝑓 ∈ 𝐹

0, otherwise
 

𝑦𝑓𝑖𝑓𝑗𝑘 {
1, 𝑖𝑓 𝑣𝑎𝑛 𝑘 serve from 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑓𝑖   𝑡𝑜 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑓𝑗  ,  𝑓𝑖 , 𝑓𝑗 ∈ 𝐹, 𝑘 ∈ 𝐾

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑦𝑜𝑓𝑗𝑘 {
1, 𝑖𝑓 𝑣𝑎𝑛  𝑘 serve from 𝑑𝑒𝑝𝑜𝑡 𝑜 𝑡𝑜 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑓𝑗  ,  𝑓𝑖 , 𝑓𝑗 ∈ 𝐹, 𝑘 ∈ 𝐾

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

𝑦𝑓𝑘 {
1, 𝑖𝑓  𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑓 𝑖𝑠 served by Vehicle k  , 𝑓 ∈ 𝐹, 𝑘 ∈ 𝐾

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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The model establishes two objective functions: minimizing total cost and maximizing customer 

coverage. 

The total cost includes the Vehicle's operating cost, the Vehicle's initial start-up cost, and any 

penalty costs incurred during delivery. The operating cost  𝑃1 encompasses several components: the 

travel cost between depot and the first customer, the travel cost between customer points, the travel 

cost between customer points to the depot, and the travel cost of returning Vehicles to the warehouse 

for picking up goods. This can be expressed as: 

𝑃1  =  ∑ ∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘

𝑘∈𝐾𝑛

·  𝑐 · 𝑑𝑖𝑗 · 𝑦𝑙 +

𝑓𝑗∈𝐹𝑎𝑓𝑖∈𝐹𝑎

∑ ∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘

𝑘∈𝐾−𝐾ℎ

·  𝑐 · 𝑑𝑖𝑗 · 𝑦𝑙𝑤

𝑓𝑗∈𝐹𝑎𝑓𝑖∈𝐹𝑎

·      ∑ ∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘

𝑘∈𝐾−𝐾ℎ

·  𝑐 · 𝑑𝑖𝑗 · 𝑦𝑙𝑜 +

𝑓𝑗∈𝐹𝑎𝑓𝑖∈𝐹ℎ−1

∑ ∑ 𝑋𝑓𝑜

𝑘∈𝐾−𝐾ℎ

·  𝑐

𝑓𝑖∈𝐹−𝐹ℎ

· 𝑑𝑖𝑜              (1) 

The initial start-up cost 𝑃2, which includes the cost of deploying newly issued vehicles, can be 

expressed as: 

𝑃2  = ∑ ∑ 𝑓𝑐 · 𝑦𝑜𝑓𝑗𝑘 ·𝑘∈𝐾𝑛𝑓𝑗∈𝐹𝑎
𝑦𝑙              (2) 

The penalty cost 𝑃3 incurred during the Vehicle delivery process can be expressed as:  

𝑃3  =  𝑤𝑐 ∑ ∑ 𝑚𝑎𝑥[0, 𝐸𝑇𝑓 − 𝑡𝑓𝑘] + 𝑝𝑐 ∑ ∑ 𝑚𝑎𝑥[0, 𝑡𝑓 − 𝐿𝑇𝑓]𝑘∈𝐾𝑎𝑓∈𝐹𝑎𝑘∈𝐾𝑎𝑓∈𝐹𝑎
    (3) 

Then the corresponding objective function of the model is expressed as: 

𝑚𝑖𝑛 𝑃 =  𝑃1 + 𝑃2 + 𝑃3                      (4) 

𝑚𝑎𝑥 ∑ ∑ 𝑦𝑓𝑘𝑘∈𝐾𝑓∈𝐹                  (5) 

Flow Conservation Constraints: 

Constraints (6), (7)and (8) ensure that each customer only served by one vehicle. Restriction (9) 

indicates that each vehicle only has a single delivery route, and each vehicle departs from the depot 

and returns to the depot after the delivery is completed. Restrictions (10) represents branch 

elimination constraint, where S indicates the collection of all the latest customer points on the whole 

service route after the vehicle delivery route is updated. 

∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘𝑘∈𝐾𝑛𝑓𝑖∈𝐹𝑎
 = 1 , ∀ 𝑓𝑗 ∈ 𝐹𝑎                 (6) 

∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘𝑘∈𝐾𝑛𝑓𝑗∈𝐹𝑎
 = 1 , ∀ 𝑓𝑖 ∈ 𝐹𝑎                     (7) 

∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘𝑘∈𝐾𝑛𝑓𝑖∈𝐹𝑎
· 𝑦𝑙𝑤 ≤ 1, ∀ 𝑓𝑗 ∈ 𝐹𝑎                         (8) 

∑ 𝑦𝑜𝑓𝑗𝑘𝑓𝑗∈𝐹𝑎
= ∑ 𝑦𝑓𝑗0𝑘𝑓𝑗∈𝐹𝑎

, ∀ 𝑘 ∈ 𝐾                          (9) 

∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘𝑓𝑗∈𝐹𝑎𝑓𝑖∈𝐹𝑎
≤ |𝑆| − 1, 𝑆 ∈ 𝐹𝑎, ∀ 𝑘 ∈ 𝐾           (10) 

Time Constraints: 

Constraint (11), (12)and (13) ensure the time window constraint of the vehicle during the delivery 

service. Constraint (14) Ensure that the route is feasible with respect to the vehicle's operational 

constraints, like maximum route length or duration. 

𝑇𝑓𝑘 + 𝑆𝑓  = 𝑎𝑓 , ∀𝑓 ∈ 𝐹，∀𝑘 ∈ 𝐾             (11) 

(𝑇𝑓𝑖𝑘 + 𝑡𝑓𝑖𝑓𝑗𝑘 + 𝑆𝑓𝑖𝑘) · 𝑦𝑓𝑖𝑓𝑗𝑘 ≤ 𝑇𝑓𝑗𝑘 · 𝑦𝑓𝑖𝑓𝑗𝑘, ∀ 𝑓𝑖 , ∀𝑓𝑗 ∈ 𝐹𝑎, ∀𝑘 ∈ 𝐾     (12) 

𝐸𝑇𝑓 ≤ 𝑇𝑓𝑘 ≤ 𝐿𝑇𝑓, ∀𝑓 ∈ 𝐹, ∀𝑘 ∈ 𝐾            (13) 
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∑ ∑ 𝜌𝑓𝑖𝑓𝑗𝑓𝑗∈𝐹 ·𝑓𝑖∈𝐹 𝑦𝑓𝑖𝑓𝑗𝑘 ≤ 𝑇𝑚𝑎𝑥, ∀𝑘 ∈ 𝐾          (14) 

Capacity Constraints: 

Constraint (15) Indicates that the demand of all customers installed in each vehicle does not exceed 

the maximum load capacity of the vehicle. Constraint (16) indicates that at the time of the update, the 

remaining load of the Vehicle that has not completed the delivery task should meet the needs of the 

remaining customer points for the service they require after the update. 

∑ ∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘𝑘∈𝐾𝑛
· 𝑑𝑓 ≤ 𝑄𝑣𝑎𝑛

𝑓𝑗∈𝐹𝑎𝑓𝑖∈𝐹𝑎
, ∀𝑘 ∈ 𝐾         (15) 

∑ ∑ ∑ 𝑦𝑓𝑖𝑓𝑗𝑘𝑘∈𝐾ℎ
· 𝑑𝑓 ≤ ∑ 𝑄𝑘

𝑣𝑎𝑛
𝑘∈𝐾−𝐾ℎ𝑓𝑗∈𝐹𝑎𝑓𝑖∈𝐹𝑎

, ∀𝑘 ∈ 𝐾       (16) 

4. Solution Framework 

To effectively address the DVRPSR, this paper introduces a new model, MA-RL, designed to 

intelligently manage the complex demands of E-grocery delivery systems. The model uses an 

embedding layer in a multi-dimensional vector space to uniformly process features such as customer 

locations, time windows, and demand volumes, thereby improving data processing efficiency and 

consistency.  The core multi-head attention mechanism enhances the model's ability to capture 

dynamic changes and spatio-temporal data heterogeneity by simultaneously focusing on multiple 

aspects of the input data. Additionally, a Long Short-Term Memory network (LSTM) process time 

series data, effectively capturing historical information to support real-time decision-making. The 

output layer employs a fully connected layer that uses a Softmax function to output the probability 

delivery of the next path selection, directly supporting real-time delivery demands. Since the order of 

customer locations and demands does not affect the final decision, we optimize input processing by 

omitting the encoder RNN and directly using embedded vectors to represent inputs,  simplifying the 

model structure and reducing computational complexity. This design enables the model to efficiently 

handle high-frequency order updates in E-grocery delivery, enhancing operational flexibility and 

system response speed. The proposed MA-RL is shown in Figure 1. 

 

Figure 1 The proposed MA-RL. 
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The embedding layer maps inputs into a high-dimensional vector space. The RNN decoder stores 

information about the decoded sequence. Then, the RNN hidden states and embedded inputs use the 

attention mechanism to process time series data through LSTM, generating hidden state 

representations and producing probabilities for the next input. 

4.1 Encode & Decode 

The state of the delivery system at any time k is defined by 𝑥𝑖
𝑡 = (𝑠𝑖 , 𝑑𝑡

𝑖 ), where 𝑠𝑖 represents the 

static elements of the input (location coordinates) and 𝑑𝑡
𝑖  represents the dynamic elements of the input 

(changes in customer demand). The state transition is stochastic, with the randomness of new requests 

resulting in an unknown probability delivery. The reward is also stochastic, but we assume its 

probability delivery is known so that the optimization model can make decisions based on potential 

costs and customer service coverage. 

In this setup, the primary optimization goal is to minimize the total cost, including transportation 

costs, service delay costs, and potential penalty costs, while maximizing the fulfillment rate of 

customer requests. This requires the model to flexibly adapt to changing demands and efficiently 

adjust route planning to respond to immediate orders. Additionally, considering the characteristics of 

the E-grocery deliveries, the model also needs to handle high-frequency order peaks, ensuring 

efficient delivery service even during peak order periods. 

In exploring the DVRPSR, we encounter a highly complex decision-making environment. The 

framework proposed in this study adopts an innovative approach, combining multi-head attention 

mechanisms and a RNN decoder to optimize vehicle route selection under dynamic conditions. This 

model is particularly suitable for E-grocery deliveries, where customer demands and delivery 

conditions may constantly change. 

For this framework, we define a general combinatorial optimization problem with an input set 𝑋 =

{𝑥𝑖 , 𝑖 = 1,·· ，𝑁}. We allow some elements of each input to change between decoding steps, which 

is indeed the case in VRP. Dynamic elements may be the product of the decoding process itself, or 

they can be imposed by the environment. In this DVRPSR, as vehicles visit customer nodes, the 

remaining customer demand changes over time; or we may consider a variation where new customers 

arrive or adjust their demand values over time, independent of vehicle decisions. Formally, we 

represent this with a series of tuples 𝑥𝑖
𝑡 = {(𝑠𝑖 , 𝑑𝑡

𝑖 ), 𝑡 = 0,1,··· 𝑁}, where 𝑠𝑖 and 𝑑𝑡
𝑖  are the static and 

dynamic elements of the input, respectively. Static elements 𝑠𝑖  may include customer location 

coordinates, while dynamic elements 𝑑𝑡
𝑖  such as customer demand vary over time and environmental 

conditions. The vector 𝑥𝑖
𝑡 can be viewed as a feature vector describing the state of input 𝑖 at time 𝑡. 

For example, in VRP, 𝑥𝑖
𝑡  provides a snapshot of customer 𝑖 , where 𝑠𝑖  corresponds to the 2D 

coordinates of the customer's location, and 𝑑𝑡
𝑖  represents their demand at time 𝑡. We denote the set of 

all input states at a fixed time 𝑡 as 𝑋𝑡. 

The decoding process starts at the initial state  𝑋0, using a pointer  𝑦0 to indicate the initial input. 

At each decoding time point 𝑡(𝑡 = 0,1,··· 𝑁) , the pointer  𝑦𝑡+1  selects one input from  𝑋𝑡 as the 

decision input for the next step. This selection process reflects the real-time decision needs of the 

vehicle, such as choosing the next customer to visit or returning to the depot. The entire process 

continues until specific termination conditions are met, such as all customer demands being fulfilled. 

This process generates a sequence 𝑌 =  { 𝑦𝑡 , 𝑡 = 0,1,··· 𝑁}   of possible length 𝑇 , reflecting the 
dynamic routing solution to the problem. The sequence length may differ from the input length 𝑀 

because, for example, vehicles might need to return to the depot multiple times to refill. We also use 

the notation 𝑌𝑡 to represent the decoding sequence up to time 𝑡, i.e.,  𝑌𝑡 =  𝑦0,···  𝑦𝑡. 

Our goal is to develop a stochastic policy 𝜋 that generates the sequence 𝑌 in a way that minimizes 
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the loss objective while satisfying the problem constraints. The loss function is defined based on a 

negative number of expected rewards, which can be expressed as: 

𝐿(𝜃) = −𝔼𝜋𝜃
[𝑅(𝜏)]                                                                  (17) 

Among them, 𝜋𝜃 is a strategy, parameterized by a neural network, 𝜏 stands for trajectory (a series 
of states and actions), 𝑅(𝜏) is the reward for that trajectory, which can be expressed as: 

𝑅(𝜏) = 𝛼 · (−𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝜏)) + 𝛽 · NumCustomersServed(τ)                                        (18) 

 𝑇𝑜𝑡𝑎𝑙𝐶𝑜𝑠𝑡(𝜏)  is the total cost of the path 𝜏 ,𝑁𝑢𝑚𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠𝑆𝑒𝑟𝑣𝑒𝑑(𝜏)  Is the number of 

customers served in the path 𝜏, 𝛼 and 𝛽 are weighting factors that adjust for the relative importance 

of cost and number of customers served in the reward function.  
The optimal policy 𝜋∗ will generate the optimal solution sequence with probability 1. Our aim is 

to make 𝜋 as close to 𝜋∗ as possible. We use the probability chain rule to decompose the probability 

of generating the sequence 𝑌, denoted as 𝑃(𝑌| 𝑋0 ) as follows: 

𝑃(𝑌| 𝑋0 ) = ∏ 𝑃( 𝑦𝑡+1| 𝑌𝑡 , 𝑋𝑡 )𝑇
𝑡=0         (19) 

The state transition function describes the system state update based on the current decision and 

the previous state.  

𝑋𝑡+1 =  𝑓( 𝑦𝑡+1, 𝑋𝑡)           (20) 

The attention mechanism calculates the probability at each step through the function g, in the form 

of 

𝑃( 𝑦𝑡+1| 𝑌𝑡 , 𝑋𝑡) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑔( ℎ𝑡 , 𝑋𝑡))       (21) 

where 𝑔 is an affine function outputting a vector of the input size, and  ℎ𝑡 is the state of the RNN 

decoder, summarizing the information from the previous decoding steps  𝑦0,···  𝑦𝑡. 

4.2 Training Method 

To train the network, we use the well-known strategy gradient methods. To use these methods, we 

parameterize the stochastic policy π with the parameter θ. The policy gradient method iteratively 

improves the policy using a gradient estimate of the expected returns associated with the policy 

parameters. In principle, the policy gradient model consists of two networks: (i) an actor network that 

predicts the probability delivery of the next action in any given decision step, and (ii) a critic network 

that estimates the reward of any problem instance from a given state. 

4.3 Update Strategy 

For the generation of dynamic demands, the main idea is to transform the dynamic problem into 

multiple static problems for solution. We adopt a customer point update strategy. In this strategy, 

when any vehicle arrives at a customer point and completes the service, the system updates the 

dynamic information upon leaving the customer point and determines if new customer demands have 

arisen. If new demands arise, the system first checks if the remaining capacity of the vehicle can 

satisfy the new customer point's demands. If it can, the vehicle's delivery route is re-planned; 

otherwise, the vehicle continues with the initial delivery plan, and the new demand point is deferred 

for arrangement in the next update. Under this update strategy, the vehicle's delivery process is 

illustrated in Figure 2. 
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Figure 2 Vehicle routing with real-time customer request updates  

5. Experimental Analyses and Results 

5.1 Data Sets and Parameters 

To comprehensively evaluate our proposed dynamic vehicle routing optimization model based on 

multi-head attention mechanisms and reinforcement learning, we designed a series of simulation 

experiments (parameters are shown in Table 2). These experiments cover small-scale (50 customers 

and 5 vehicles), medium-scale (100 customers and 10 vehicles), and large-scale (200 customers and 

20 vehicles) scenarios to simulate various situations in real-world logistics delivery environments. 

Our goal is to verify the performance and adaptability of the model across a wide range of application 

scenarios through these tests of different scales. 

TABLE 2 Characteristics of the Data Sets 

Data Sets 
No. of depots (O), customers (F) and vehicles K 

Small datasets 

Depot = 1, customers 

=50, 

Vehicles = 5 

Medium datasets 

Depot = 1, customers = 100, 

Vehicles = 10 

Large datasets 

Depot = 1, customers = 200, 

Vehicles = 20 

Parameters Model 
Fixed cost of dispatch fc 100 

Cost of waiting for per unit minutes early arrival 0.5 
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wc 

Penalty costs for per unit minutes late arrival of 

vehicles pc 
1 

Consumption cost per unit mile traveled by Vehicle 

c 
20 

Capacity of Vehicles 𝑄𝑣𝑎𝑛 60 

Speed of Vehicles v 20 

the maximum allowable time for a Vehicle's route 

𝑇𝑚𝑎𝑥 
8 

Demand of customer 𝑑𝑓 Lognormal ( 𝜇𝑑𝑓
, 

1

3
 𝜇𝑑𝑓

) 

Travel time of Vehicles 𝑐 Lognormal (𝑢𝜌𝑓𝑖𝑓𝑗
，

𝑈𝐵−𝑢𝜌𝑓𝑖𝑓𝑗

100
𝑢𝜌𝑓𝑖𝑓𝑗

) * 

Time windows for each customer 
Lognormal ( 𝑇𝑓𝑘

𝑣𝑎𝑛 +𝜌𝑓𝑖𝑓𝑗
+ 𝑆𝑓𝑘, 𝜛 − 𝜌𝑓𝑖𝑓𝑗

−

𝑆𝑓𝑘） 
* UB is the upper bound value, which is greater than the longest arc in the graph. 

In the experimental setup, we compared our method MA-RL, with traditional static optimization 

model, single-head attention mechanism model, dynamic model without attention mechanisms, 

genetic algorithm, particle swarm optimization algorithm, and ant colony optimization algorithm. All 

models were run under the same conditions to ensure fairness in comparison. For this purpose, we 

randomly generated the location (latitude and longitude) and demand of each customer, with demand 

volumes following a normal delivery with a mean between 300 and 1800, and a standard deviation 

range of 0 to 1/3 of the average demand. Additionally, we set time windows for each customer, 

referring to the benchmark data generation method of the vehicle routing problem with time windows 

(VRPTW) proposed by Solomon (1987), with appropriate adjustments [28]. 

When calculating the distance between customer points, we chose to use the straight-line distance 

due to the complexity and difficulty of obtaining real-world road network conditions. These distances 

were calculated using the Haversine formula based on the latitude and longitude of the customer 

points. Through this method, we could evaluate the performance of different algorithms in handling 

real vehicle routing optimization problems in a controlled environment, particularly their ability to 

handle dynamic changes and time window constraints.  

The study addresses the DVRPSR  using reinforcement learning methods and multi-head attention 

mechanisms. With 10 attention heads, we set the model to guarantee computational efficiency while 

sufficiently collecting and analyzing intricate input information. The hidden layers' dimensionality 

was first set at 512, then changed depending on experimental requirements. A learning rate of 0.002 

was found inside the reinforcement learning framework to help to stabilize the learning process; the 

discount factor was set at 0.95, therefore enabling the model to balance instantaneous rewards with 

long-term advantages. To inspire the search of a larger solution space—which is progressively limited 

to support the convergence of the algorithm—a somewhat high initial exploration rate was used. 

Configured at 64, the sample count would improve memory management and batch processing 

performance all through the training cycle. The unique use cases and data characteristics guide the 

choice and improvement of these criteria. By means of repeated experimental testing, they undergo a 

process of continuous adaptation to attain the greatest potential learning outcomes and efficacy in fast 

changing environments. 

5.2 Perfermence of the MA-RL  

We designed and conducted a comprehensive series of experiments to precisely evaluate the 
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impact of MA-RL on DVRPSR. The experiments were structured into three different levels based on 

the number of customers and vehicle configurations: micro-level (50 clients and 5 vehicles), 

intermediate level (100 clients and 10 vehicles), and macro-level (200 clients and 20 vehicles). This 

layered experimental design allowed us to thoroughly investigate how effectively multi-head 

attention processes adapt and perform across systems of varying sizes. 

Table 3 presents the results of our studies in detail. The first column illustrates different scales of 

the experiment, such as A-n50-k5, indicating 50 customers served by 5 vehicles. The second column 

shows the performance of seven different methods (Static Optimization, Single-Head Attention, MA-

RL, Dynamic Without Attention Genetic Algorithm, Genetic Algorithm, Particle Swarm 

Optimization, and Ant Colony Optimization) across three scales. The third, fourth, and fifth columns 

display the total delivery route lengths, customer service coverage, and run times obtained by the 

various methods at different scales. Our findings demonstrate that MA-RL significantly outperformed 

other models in terms of both total and mean route lengths across all scales. 

To highlight the optimal values of the mes at different levels, we compared the performance of the 

seven methods across the three scales and bolded the best results. Specifically, the MA-RL achieved 

a cumulative route length of 1830.07 in a limited-scale test, which is less than half of the 3660.14 

path length reported by the stationary optimization model. This MA-RL also exhibited considerably 

shorter route lengths in both medium-sized and large-scale studies, consistently outperforming other 

methods. Additionally, MA-RL achieved the highest rate of meeting customer requests among all 

tested scales, further demonstrating its effectiveness in real-world scenarios. In the limited trial, the 

model reached a customer request satisfaction rate of 91%, significantly superior to the 71% achieved 

by the static optimization model. While MA-RL requires additional computational time, the extra 

workload is well-justified given the significant improvements it brings in optimizing routes and 

expanding customer service capabilities. 

These experimental results not only validate the superiority of MA-RL in DVRPSR, but also 

demonstrate their potential practical value, especially in logistics and delivery fields that require 

dynamic responses and efficient route decisions. Through comparative analysis and practical 

performance evaluation, we further confirmed the powerful capabilities of the dynamic optimization 

model with multi-head attention mechanisms in handling complex routes and time window 

constraints. 

TABLE 3 Comparison of Total Path Lengths, Computation Times, and Customer Service Coverage 

Rates for Different Models Across Various Scales 

Scale Model 
Total Path 

Length 

Customer Service 

Coverage Rate 

Computation 

Times(S) 

A-n50-K5 Static Optimization 3660.14 71% 12 

A-n50-K5 Single-Head Attention 2200.1 85% 21 

A-n50-K5 MA-RL 1830.07 91% 26 

A-n50-K5 
Dynamic Without 

Attention 
2510.16 79% 14 

A-n50-K5 Genetic Algorithm 2012.21 88% 31 

A-n50-K5 
Particle Swarm 

Optimization 
2108.31 87% 28 

A-n50-K5 Ant Colony Optimization 1950.68 90% 34 

A-n100-

K10 
Static Optimization 4930.14 65% 14 

A-n100- Single-Head Attention 3000.1 79% 25 
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K10 

A-n100-

K10 
MA-RL 2465.07 88% 31 

A-n100-

K10 

Dynamic Without 

Attention 
3410.76 75% 23 

A-n100-

K10 
Genetic Algorithm 2830.76 85% 39 

A-n100-

K10 

Particle Swarm 

Optimization 
2968.48 83% 37 

A-n100-

K10 
Ant Colony Optimization 2753.53 86% 45 

A-n200-

K20 
Static Optimization 8510.14 60% 17 

A-n200-

K20 
Single-Head Attention 5500.1 78% 29 

A-n200-

K20 
MA-RL 4255.07 85% 36 

A-n200-

K20 

Dynamic Without 

Attention 
5002.56 70% 27 

A-n200-

K20 
Genetic Algorithm 4512.86 82% 49 

A-n200-

K20 

Particle Swarm 

Optimization 
4724.74 80% 46 

A-n200-

K20 
Ant Colony Optimization 4351.84 84% 55 

* A-n50-k5 indicates that this scale involves 5 vehicles delivering to 50 customers. 

5.3 Comparision of Nomalized Outcomes 

To thoroughly explore and emphasize the importance of the experimental findings, we normalized 

the total path length, processing duration, and customer service coverage rate for each model across 

various experimental scales. This normalization process establishs a fair standard for more accurately 

evaluating the effectiveness of each model. Figure 3 through 5 illustrate the relative performance of 

multiple models at different scales using this approach.  

Figure 3 shows that MA-RL consistently achieved remarkable performance across all 

experimental scales, significantly reducing path lengths and highlighting its efficiency in route 

optimization. In contrast, the stationary optimization model lagged behind, exhibiting the greatest 

increase in route length among all models. This stark contrast underscores the superior capability of 

the multi-head attention mechanism in solving route optimization problems in dynamic environments. 

In Figure 4, MA-RL proved its strong capacity to satisfy consumer needs, achieving the highest 

satisfaction ratings across all test criteria. Conversely, the stationary optimization method showed the 

worst performance in customer service coverage, underscoring its inability to handle complex 

consumer demands in constantly changing circumstances. 

Figure 5 shows that the stationary optimization framework outperformed other models in terms 

of conventional computation duration due to its simpler calculation technique, resulting in faster 

processing times. However, because MA-RL manages more complex data handling and decision-

making tasks, it often requires longer processing times.  This implies that whie MA-RL is more 
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efficient than its alternatives, there is still room for improvement in its computational efficiency. 

 

Figure 3 Comparison chart of standardized total path lengths of different models across various 

scales 

 

Figure 4 Comparison chart of standardized customer service coverage rates of different models 

across various scales 
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Figure 5 Comparison chart of standardized computation times of different models across various 

scales 

6. Discussion and Conclusion 

This study developed a novel adaptive route optimization method by integrating reinforcement 

learning with multi-head attention mechanisms, specifically targeting real-time customer request 

updates in the DVRPSR. Experimental results demonstrate significant advantages of MA-RL in 

reducing total path lengths and improving customer service coverage rates, compared to other models. 

These enhancements are particularly meaningful for practical applications in the logistics industry, 

especially in terms of increasing transportation efficiency and reducing energy consumption. 

Future research will focus on optimizing the computational efficiency of the multi-head attention 

mechanisms and exploring predictive update strategies to further enhance the model's adaptability 

and efficiency in complex logistics networks. Efforts will also be dedicated to refining the model's 

architecture to reduce implementation costs and improve performance, ensuring rapid and effective 

responses to customer needs in dynamically changing market environments. 

Additionally, the progress of this study signals a deeper integration of artificial intelligence, 

machine learning, and modern logistics management, driving digital transformation in the logistics 

industry. This integration enhances the flexibility and response speed of logistics services, helping 

businesses maintain a competitive edge in the fiercely competitive market by attracting and retaining 

a broader customer base. In the long term, these technological advancements will optimize logistics 

infrastructure at a societal level, promoting the construction of more efficient and sustainable logistics 

networks. 
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