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Abstract: Managing real-time road conditions and satisfying stochastic customer demands
pose significant challenges for optimizing the Dynamic Vehicle Routing Problem with
Stochastic Requests (DVRPSR) in urban grocery delivery settings. Most existing
approaches generate solutions offline as static plans, which are only applicable to the
specific scenarios they were optimized for, making it difficult to efficiently plan and operate
a dynamic urban grocery delivery system for last-mile delivery. In this study, we introduce
a new dynamic optimization model for DVRPSR. Our approach combines a multi-attention
mechanism with reinforcement learning and incorporates a customer point update strategy
to enhance efficiency in urban E-grocery delivery. To validate the effectiveness of our
method, we conducted experiments across small (50 customers and 5 vehicles), medium
(100 customers and 10 vehicles), and large (200 customers and 20 vehicles) data scales. The
results demonstrate that our method outperforms current routing methods, reducing total
path length, improving customer service coverage, and maintaining efficient computation
time. This provides a promising strategy for enhancing the efficiency of urban E-grocery
delivery and reducing operational costs.

1. Introduction

With the dramatic growth of urban E-grocery delivery during the pandemic, the competitive
battleground has shifted to focus on speed and user experience, particularly for immediate and
unplanned needs. The main challenge in urban grocery delivery is meeting dynamic and unpredictable
customer demands while maintaining timely and efficient service. The Dynamic Vehicle Routing
Problem with Stochastic Requests (DVRPSR) is a critical issue in this sector, significantly impacting
both efficiency and customer satisfaction.

The conventional Vehicle Routing Problem (VRP) faces difficulties in dynamic situations due to
rising unpredictability and constantly changing client needs. While most previous studies on
DVRPSR concentrate on real-time routing changes, they often rely on stationary assumptions and do
not adequately address the intrinsic complexity and unpredictability of E-grocery delivery [1, 2]. In
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practical urban E-grocery routing, some requests (static requests) are known in advance, while others
(dynamic requests) appear randomly during service. Therefore, we need a model capable of quickly
reacting and adjusting to order changes. Unfortunately, many of the current models fail to adequately
depict the dynamic and varied character of real-world situations [3-5]. Most existing approaches for
DVRPSR still depend on heuristics that define operators handy to guide the random exploration of
the solution space, which hindering efficient online decision-making.

This research aims to develop new model of DVRPSR to assign an initial route plan to delivery
vehicles and dynamically modify the routes depending on developing needs simultaneously, to satisfy
as many client requests as possible and thereby reduce the delivery cost. Reinforcement Learning
(RL) offers new insight to handle the dynamic flexibility needed in current routing difficulties [6-8].
However, these methods often face challenges with scalability and computational efficiency,
especially when dealing with complex and large-scale problems. Consequently, integrating RL with
advanced techniques, such as deep neural networks become essential to improve performance and
applicability in real-world scenarios. Notably, the combination of multi-head attention mechanisms
from natural language processing with reinforcement learning is particularly promising[9]. This
approach enhances feature identification and dynamic route optimization by providing insights into
the interdependencies and relationships between various input features.

Consequently, in this work we aim to develop a new dynamic vehicle routing optimization based
on the Markov Decision Processes (MDPs), which see the ideal solution as a succession of strategic
choices. This allows us to use reinforcement learning to find near-optimal solutions by increasing the
probability of decoding the "ideal" sequence. Furthermore, given that dynamic features cannot be
adequately extracted for optimal dynamic path optimization using reinforcement learning alone, the
introduction of the multi-attention mechanism allows our model to effectively explore the
dependencies and relationships between input features, thus lead to the main following contributions
of this paper:

« We propose a new model combining a multi-attention mechanism with reinforcement learning
(MA-RL) to address the DVRPSR. This model optimizes both offline and online decisions for
scheduling dynamic requests, providing a comprehensive solution for initial route planning and real-
time adjustments.

«  We employ a real-time update strategy for customer requests in sovling the DVRPSR, enabling
dynamic adjustments to the delivery route. By continually adapting to fluctuating demand, this
strategy ensures optimal routing and efficient delivery, which are essential for maintaining service
quality and operational agility in fast-paced market conditions.

* The model's performance is rigorously tested through artificial benchmarks, coving a range of
scenarios from small to large-scale. This thorough testing demonstrates the model's adaptability and
consistent effectiveness, confirming its capability to handle diverse operational scales and complex
scenarios. The results validate the model's utility and robustness in real-world applications.

2. Literature Review

VRP has long been a fundamental concern in logistics and transportation research, focusing on
decreasing travel times and costs while satisfying customer needs. Historically, vehicle routing
problems have been approached with fixed assumptions, starting with the innovative method
proposed by Dantzig and Ramser in 1959 and evolving through modifications such as the Time-
Windowed VRP (VRPTW) and the Capacitated VRP (CVRP). These presumptions are predicated on
the belief that, during route planning, key variables such as customer addresses, demand levels, and
traffic conditions are static and unchangeable [10-12]. However, traditional models show major flaws
in terms of adaptation to changing conditions and uncertainty. This is particularly true for E-grocery

121



delivery, where consumer demand can fluctuate wildly and traffic patterns can change quickly. To
address these challenges, recent research focuses on solving the Dynamic Vehicle Routing Problem
(DVRP), which is designed to manage the dynamic nature of e-grocery delivery and align static
scheduling with the needs of real-time delivery. DVRP allows for instantaneous route adjustment to
manage on-demand order integration, moving beyond predefined planning assumptions. Grocery
stores must be able to react fast for quick changes and fine-tune delivery routes to satisfy consumer
needs. To address this real-world challenge, DVRP was introduced in the late 1970s [13,14]. Psaraftis
(1988) investigate the quick route adjustments in response to new data, urgent needs, or vital events
[15]. Since then, the extensive body of literature on DVRP justifies the numerous reviews dedicated
to this problem [16-18]. Recently, DVRPSR have garnered growing interest [19]. Many methods
within the Multiple Scenario Approach (MSA) framework still depend on tools and heuristics
designed for static variants, creating sets of anticipatory plans that are updated or discarded in
response to dynamic events. However, current DVRPSR models remain inadequate for managing the
complexity of frequent order changes in E-grocery deliveries [20,21].

Pointer Networks paved the way for generalized solutions to combinatorial problems using
Recurrent Neural Networks (RNNs) [22]. Reinforcement Learning (RL), which primarily focuses on
rewards and penalties, is a strong technique in machine learning that enhances decision-making by
examining the results of actions. RL is particularly effective in adapting to changing conditions and
addressing the complexity of VRP [23]. By modeling and optimizing route planning strategies via
experimentation and iterative improvements, RL can adapt to rapidly changing delivery needs and
fluctuating road conditions [24,25]. These research studies leverage the generalization capability of
artificial intelligence to develop vehicle routes with satisfactory performance. However, few studies
have attempted to employ machine learning-based methods to solve VRPs with stochastic demand.
Tackling this type of problem requires achieving high-quality solutions with acceptable
computational effort.

Recent advances in deep learning's multi-head attention mechanisms have significantly increased
data processing efficiency. Proposed by Vaswani and his colleagues for the transformer model
architecture [26],this design allows the simultaneous processing of multiple data segments. This
enables the model to attend multiple points along the input stream concurrently. This parallel
processing capability greatly enhances the model’s ability to compile comprehensive data from
multiple angles [27].Therefore, Multi-head attention approaches can be highly beneficial in the field
of E-grocery delivery by fully analyzing and understanding the intricate spatial and temporal
relationships between consumer locations and their needs. These techniques can simplify real delivery
routes, hence improving delivery performance and customer service quality.

3. Methodology
3.1 Problem Definition

In the realm of E-grocery delivery, a primary difficulty in addressing the DVRPSR lies in adeptly
handling fluctuating demands in real-time while maintaining efficiency and cost-effectiveness. In this
study, we define the DVRPSR as follows: Devlivey vehicles pick up groceries from a distribution
center and travel to a depot. Deliveries start and end from a depot to address customer demands that
arise unpredictably over a specified timeframe (a half-day). These requests can be categorized into
two types: (i) deterministic requests known before leaving the depot; and (ii) random requests that
occur with a certain probability after leaving the depot. The location of each customer is known, and
it is assumed that all requests must be accepted and serviced by vehicles.

122



3.2 Formulation of the Model

The network of DVRPSR is comprised of a set of nodes N, a set of arcs A, and a set of vehicles K.
The set of nodes N is further divided into two subsets: depot (0) and customers (F) , denoted as

N = 0 U F.The demand of each customer f € F is defined by the required weight of goods u, (kg).
The probability of sending a request Prfollows a binomial delivery with K trials, and the probability
of a new request occurring in period k € K is calculated asPs, = 1 — k1 — P; . The maximum

payload of a vehicle is U (kg), and the empty vehicle (curb) weight is W (kg).
The specific model parameters and variables are shown in Table 1.

TABLE 1 Notations of variables and parameters

Sets
o Set of depot
F Set of customers, F={F, UF, UF, UF,_; UF, UE}
E, Set of new customers after dynamic update
F, Set of initial customers
Fy Set of having been serviced customers when dynamically updated
Fn_4 Set of having just been serviced customers during this dynamic update
F, Set of having not been serviced customers after dynamically updated
E, Set of customers that are being serviced
N Node set consist of {O U F }
K Set of Vehicles visiting the F,K = {K; UK, UK, UK, UK, UK,}
K; Set of initial Vehicles visiting the F
K, Set of newly dispatched Vehicles visiting the F after the dynamic update
Ky Set of VVehicles had completed delivery at the time of the dynamic update
K, Set of Vehicles visiting the F in delivery after dynamic update
K, Set of Vehicles visiting the Fthat are not at the customer's point at the time of the dynamic update
K, Set of Vehicles visiting the F that are at the customer's point at the time of the dynamic update
Deterministic parameters
fc Fixed cost of dispatch
we Cost of waiting for early arrival
pc Penalty costs for late arrival of vehicles
c Consumption cost per unit mile traveled by Vehicles
ds Demand of customer f, f € F
dyj Distance needed to travel on arc (i, /)
d;, Distance from customer point to depot
Qvan Capacity of Vehicles
Q" Remaining capacity of Vehicle k responding to dynamic update, k € K
v Speed of Vehicles
w Service stop time of the depot
Stochastic parameters
Prif; Time needed to travel from customer f; to customer f; , f;, f; € F
Stk Vehicle Vehicle & arrives at customer f service time, f € F, k € K
Tnax the maximum allowable time for a Vehicle's route
Auxiliary variables
T, Point of commencement of delivery
T, Point of acceptance of dynamic requirements
Tri Vehicle £ starts service at the customer f,f € F,k € K
ty Intervals for dynamic updating of requirements
LTy Latest time for client f to receive services, f € F
ETy Earliest time client f receives service, f € F
ar The moment the Vehicle leaves the customer f, f € F
tri The moment the Vehicle & arrives at the customer f, f € F,k € K
" Visit time at node f by vehicle k, f € F
Decision variables
{1 , if Decision — making on the dispatch of new vehicles
% 0, otherwise
1,if Decision — making vehicles on their way to delivery
Yiw { 0, otherwise
1,if Decision — making vehicles at the point of customer
Yo { 0, otherwise
e {1, if customer f back to depot served by vank,k € K,f € F
fo 0, otherwise
1,if van k serve from customer f; to customer f] , flf, €EFkEK
Vrif { 0, otherwise
1,if van k serve from depot o to custumerfj ) fi,fj eEF,keK
Yorsk { 0, otherwise
1,if customer f is served by Vehiclek ,f € F,k € K
sk { 0, otherwise
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The model establishes two objective functions: minimizing total cost and maximizing customer
coverage.

The total cost includes the Vehicle's operating cost, the Vehicle's initial start-up cost, and any
penalty costs incurred during delivery. The operating cost P; encompasses several components: the
travel cost between depot and the first customer, the travel cost between customer points, the travel
cost between customer points to the depot, and the travel cost of returning Vehicles to the warehouse
for picking up goods. This can be expressed as:

Py = Z Z ZYfifjk'C'dij'yl'l'Z Z Z Yrifjie® € dij Yiw

fi€Fq ijFa keK;, fi€Fq ijFa k€EK—Kp
z 2 z Yk € dij Yo + Z Z X0+ €+ dj €Y
fi€Fp—1 fj€Fq KEK—Kp fi€F—Fp kEK—Kp

The initial start-up cost P,, which includes the cost of deploying newly issued vehicles, can be
expressed as:

P, = ijepa ZkEanC “Yorjk "V (2
The penalty cost P; incurred during the Vehicle delivery process can be expressed as:
Py = wc Yrer, Ykek, max[0, ETy — tpr] + pc Xrer, Zkek, max [0, ty — LTf] 3)
Then the corresponding objective function of the model is expressed as:
minP = P, + P, + P3 4)
max Y. rer Lkek Yk (5)

Flow Conservation Constraints:

Constraints (6), (7)and (8) ensure that each customer only served by one vehicle. Restriction (9)
indicates that each vehicle only has a single delivery route, and each vehicle departs from the depot
and returns to the depot after the delivery is completed. Restrictions (10) represents branch
elimination constraint, where S indicates the collection of all the latest customer points on the whole
service route after the vehicle delivery route is updated.

Yfier, Lkeky Yrifk = 1,V fj € Fy (6)
ijEFaZkEKn Yrfie =1LV €R (7
Yfier, Lkeky Yifjk " Yw S LV f € Fy 3
YfierYofik = Lfjer, Yrjor YV k €K ©)
Yriera Lfjer Yrife S ISI = LS €, Vk €K (10)

Time Constraints:

Constraint (11), (12)and (13) ensure the time window constraint of the vehicle during the delivery
service. Constraint (14) Ensure that the route is feasible with respect to the vehicle's operational
constraints, like maximum route length or duration.

(Tfik + tfifjk + Sfik) : yfifjk S Tfjk * yfifjk’vfi'vf} € Fa, Vk € K (12)
ET; < Ty < LT, Vf €F,Vk €K (13)
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Y fieF ijeF Prif;  Yrifjk < Tmax Vk € K (14)

Capacity Constraints:

Constraint (15) Indicates that the demand of all customers installed in each vehicle does not exceed
the maximum load capacity of the vehicle. Constraint (16) indicates that at the time of the update, the
remaining load of the Vehicle that has not completed the delivery task should meet the needs of the
remaining customer points for the service they require after the update.

ZfiEFaijEFaZkEKn yflf]k ' df < Q‘Uan'vk EK (15)

L fier, Lf ek, Lkeky Yrif i * A S Ykex—k, Q" Vk € K (16)
4. Solution Framework

To effectively address the DVRPSR, this paper introduces a new model, MA-RL, designed to
intelligently manage the complex demands of E-grocery delivery systems. The model uses an
embedding layer in a multi-dimensional vector space to uniformly process features such as customer
locations, time windows, and demand volumes, thereby improving data processing efficiency and
consistency. The core multi-head attention mechanism enhances the model's ability to capture
dynamic changes and spatio-temporal data heterogeneity by simultaneously focusing on multiple
aspects of the input data. Additionally, a Long Short-Term Memory network (LSTM) process time
series data, effectively capturing historical information to support real-time decision-making. The
output layer employs a fully connected layer that uses a Softmax function to output the probability
delivery of the next path selection, directly supporting real-time delivery demands. Since the order of
customer locations and demands does not affect the final decision, we optimize input processing by
omitting the encoder RNN and directly using embedded vectors to represent inputs, simplifying the
model structure and reducing computational complexity. This design enables the model to efficiently
handle high-frequency order updates in E-grocery delivery, enhancing operational flexibility and
system response speed. The proposed MA-RL is showri in Figure 1.

LSTM Layer

Mulit-Head
Attention
Layer

Embeddinbg

Figure 1 The proposed MA-RL.
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The embedding layer maps inputs into a high-dimensional vector space. The RNN decoder stores
information about the decoded sequence. Then, the RNN hidden states and embedded inputs use the
attention mechanism to process time series data through LSTM, generating hidden state
representations and producing probabilities for the next input.

4.1 Encode & Decode

The state of the delivery system at any time k is defined by x{ = (s¢, dl), where s' represents the
static elements of the input (location coordinates) and d} represents the dynamic elements of the input
(changes in customer demand). The state transition is stochastic, with the randomness of new requests
resulting in an unknown probability delivery. The reward is also stochastic, but we assume its
probability delivery is known so that the optimization model can make decisions based on potential
costs and customer service coverage.

In this setup, the primary optimization goal is to minimize the total cost, including transportation
costs, service delay costs, and potential penalty costs, while maximizing the fulfillment rate of
customer requests. This requires the model to flexibly adapt to changing demands and efficiently
adjust route planning to respond to immediate orders. Additionally, considering the characteristics of
the E-grocery deliveries, the model also needs to handle high-frequency order peaks, ensuring
efficient delivery service even during peak order periods.

In exploring the DVRPSR, we encounter a highly complex decision-making environment. The
framework proposed in this study adopts an innovative approach, combining multi-head attention
mechanisms and a RNN decoder to optimize vehicle route selection under dynamic conditions. This
model is particularly suitable for E-grocery deliveries, where customer demands and delivery
conditions may constantly change.

For this framework, we define a general combinatorial optimization problem with an input set X =
{x',i =1,-, N}. We allow some elements of each input to change between decoding steps, which
is indeed the case in VRP. Dynamic elements may be the product of the decoding process itself, or
they can be imposed by the environment. In this DVRPSR, as vehicles visit customer nodes, the
remaining customer demand changes over time; or we may consider a variation where new customers
arrive or adjust their demand values over time, independent of vehicle decisions. Formally, we
represent this with a series of tuples x{ = {(s!,d}),t = 0,1,-- N}, where s and d} are the static and
dynamic elements of the input, respectively. Static elements s’ may include customer location
coordinates, while dynamic elements d} such as customer demand vary over time and environmental
conditions. The vector x{ can be viewed as a feature vector describing the state of input i at time t.
For example, in VRP, x} provides a snapshot of customer i, where s corresponds to the 2D
coordinates of the customer's location, and d} represents their demand at time ¢t. We denote the set of
all input states at a fixed time t as X;.

The decoding process starts at the initial state X, using a pointer y, to indicate the initial input.
At each decoding time point t(t = 0,1,-:- N), the pointer y;,; selects one input from X; as the
decision input for the next step. This selection process reflects the real-time decision needs of the
vehicle, such as choosing the next customer to visit or returning to the depot. The entire process
continues until specific termination conditions are met, such as all customer demands being fulfilled.
This process generates a sequence Y = {y;,t = 0,1,-- N}} of possible length T, reflecting the
dynamic routing solution to the problem. The sequence length may differ from the input length M
because, for example, vehicles might need to return to the depot multiple times to refill. We also use
the notation Y; to represent the decoding sequence up to time ¢, i.e., Y; = Vg, V;.

Our goal is to develop a stochastic policy 7 that generates the sequence Y in a way that minimizes
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the loss objective while satisfying the problem constraints. The loss function is defined based on a
negative number of expected rewards, which can be expressed as:

L(0) = —Ery[R(»)] (17)

Among them, my is a strategy, parameterized by a neural network, 7 stands for trajectory (a series
of states and actions), Ry is the reward for that trajectory, which can be expressed as:

Ry = a - (—TotalCost(t)) + B - NumCustomersServed(T) (18)

TotalCost(t) is the total cost of the path T ,NumCustomersServed(t) Is the number of
customers served in the path 7, a and 8 are weighting factors that adjust for the relative importance
of cost and number of customers served in the reward function.

The optimal policy * will generate the optimal solution sequence with probability 1. Our aim is
to make 7 as close to " as possible. We use the probability chain rule to decompose the probability
of generating the sequence Y, denoted as P(Y| X, ) as follows:

P(Y|X,) = ?:oP(Yt+1| Yo, Xt ) (19)

The state transition function describes the system state update based on the current decision and
the previous state.

Xev1 = [(Yer1, Xt) (20)

The attention mechanism calculates the probability at each step through the function g, in the form
of

Pyl Yo Xe) = Softmax(g( htht)) (21

where g is an affine function outputting a vector of the input size, and h; is the state of the RNN
decoder, summarizing the information from the previous decoding steps yq,*** V.

4.2 Training Method

To train the network, we use the well-known strategy gradient methods. To use these methods, we
parameterize the stochastic policy m with the parameter 6. The policy gradient method iteratively
improves the policy using a gradient estimate of the expected returns associated with the policy
parameters. In principle, the policy gradient model consists of two networks: (i) an actor network that
predicts the probability delivery of the next action in any given decision step, and (ii) a critic network
that estimates the reward of any problem instance from a given state.

4.3 Update Strategy

For the generation of dynamic demands, the main idea is to transform the dynamic problem into
multiple static problems for solution. We adopt a customer point update strategy. In this strategy,
when any vehicle arrives at a customer point and completes the service, the system updates the
dynamic information upon leaving the customer point and determines if new customer demands have
arisen. If new demands arise, the system first checks if the remaining capacity of the vehicle can
satisfy the new customer point's demands. If it can, the vehicle's delivery route is re-planned;
otherwise, the vehicle continues with the initial delivery plan, and the new demand point is deferred
for arrangement in the next update. Under this update strategy, the vehicle's delivery process is
illustrated in Figure 2.
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Figure 2 Vehicle routing with real-time customer request updates
5. Experimental Analyses and Results
5.1 Data Sets and Parameters

To comprehensively evaluate our proposed dynamic vehicle routing optimization model based on
multi-head attention mechanisms and reinforcement learning, we designed a series of simulation
experiments (parameters are shown in Table 2). These experiments cover small-scale (50 customers
and 5 vehicles), medium-scale (100 customers and 10 vehicles), and large-scale (200 customers and
20 vehicles) scenarios to simulate various situations in real-world logistics delivery environments.
Our goal is to verify the performance and adaptability of the model across a wide range of application
scenarios through these tests of different scales.

TABLE 2 Characteristics of the Data Sets

Data Sets
No. of depots (O), customers (F) and vehicles K
Depsortnil Ilditjzstztr?]ers Medium datasets Large datasets
:éO Depot =1, c_:ustomers =100, Depot =1, c_:ustomers = 200,
L Vehicles = 10 Vehicles = 20
Vehicles =5
Parameters Model
Fixed cost of dispatch fc 100
Cost of waiting for per unit minutes early arrival 0.5
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wc
Penalty costs for per unit minutes late arrival of 1
vehicles pc
Consumption cost per unit mile traveled by Vehicle 20
C
Capacity of Vehicles Qv%" 60
Speed of Vehicles v 20
the maximum allowable time for a VVehicle's route 8
Tmax
Demand of customer d Lognormal (g /- § Ua f)
Travel time of Vehicles ¢ I ] ] *
ognorma (upfifj’ 100 upfzf,-)
Lognormal (T¥*™ +pr.s. + S, @ — Pr.r. —
Time windows for each customer & ( Tk Spf‘;c’ Tk Prif)
fk
* UB is the upper bound value, which is greater than the longest arc in the graph.

In the experimental setup, we compared our method MA-RL, with traditional static optimization
model, single-head attention mechanism model, dynamic model without attention mechanisms,
genetic algorithm, particle swarm optimization algorithm, and ant colony optimization algorithm. All
models were run under the same conditions to ensure fairness in comparison. For this purpose, we
randomly generated the location (latitude and longitude) and demand of each customer, with demand
volumes following a normal delivery with a mean between 300 and 1800, and a standard deviation
range of 0 to 1/3 of the average demand. Additionally, we set time windows for each customer,
referring to the benchmark data generation method of the vehicle routing problem with time windows
(VRPTW) proposed by Solomon (1987), with appropriate adjustments [28].

When calculating the distance between customer points, we chose to use the straight-line distance
due to the complexity and difficulty of obtaining real-world road network conditions. These distances
were calculated using the Haversine formula based on the latitude and longitude of the customer
points. Through this method, we could evaluate the performance of different algorithms in handling
real vehicle routing optimization problems in a controlled environment, particularly their ability to
handle dynamic changes and time window constraints.

The study addresses the DVRPSR using reinforcement learning methods and multi-head attention
mechanisms. With 10 attention heads, we set the model to guarantee computational efficiency while
sufficiently collecting and analyzing intricate input information. The hidden layers' dimensionality
was first set at 512, then changed depending on experimental requirements. A learning rate of 0.002
was found inside the reinforcement learning framework to help to stabilize the learning process; the
discount factor was set at 0.95, therefore enabling the model to balance instantaneous rewards with
long-term advantages. To inspire the search of a larger solution space—which is progressively limited
to support the convergence of the algorithm—a somewhat high initial exploration rate was used.
Configured at 64, the sample count would improve memory management and batch processing
performance all through the training cycle. The unique use cases and data characteristics guide the
choice and improvement of these criteria. By means of repeated experimental testing, they undergo a
process of continuous adaptation to attain the greatest potential learning outcomes and efficacy in fast
changing environments.

5.2 Perfermence of the MA-RL

We designed and conducted a comprehensive series of experiments to precisely evaluate the
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impact of MA-RL on DVRPSR. The experiments were structured into three different levels based on
the number of customers and vehicle configurations: micro-level (50 clients and 5 vehicles),
intermediate level (100 clients and 10 vehicles), and macro-level (200 clients and 20 vehicles). This
layered experimental design allowed us to thoroughly investigate how effectively multi-head
attention processes adapt and perform across systems of varying sizes.

Table 3 presents the results of our studies in detail. The first column illustrates different scales of
the experiment, such as A-n50-k5, indicating 50 customers served by 5 vehicles. The second column
shows the performance of seven different methods (Static Optimization, Single-Head Attention, MA-
RL, Dynamic Without Attention Genetic Algorithm, Genetic Algorithm, Particle Swarm
Optimization, and Ant Colony Optimization) across three scales. The third, fourth, and fifth columns
display the total delivery route lengths, customer service coverage, and run times obtained by the
various methods at different scales. Our findings demonstrate that MA-RL significantly outperformed
other models in terms of both total and mean route lengths across all scales.

To highlight the optimal values of the mes at different levels, we compared the performance of the
seven methods across the three scales and bolded the best results. Specifically, the MA-RL achieved
a cumulative route length of 1830.07 in a limited-scale test, which is less than half of the 3660.14
path length reported by the stationary optimization model. This MA-RL also exhibited considerably
shorter route lengths in both medium-sized and large-scale studies, consistently outperforming other
methods. Additionally, MA-RL achieved the highest rate of meeting customer requests among all
tested scales, further demonstrating its effectiveness in real-world scenarios. In the limited trial, the
model reached a customer request satisfaction rate of 91%, significantly superior to the 71% achieved
by the static optimization model. While MA-RL requires additional computational time, the extra
workload is well-justified given the significant improvements it brings in optimizing routes and
expanding customer service capabilities.

These experimental results not only validate the superiority of MA-RL in DVRPSR, but also
demonstrate their potential practical value, especially in logistics and delivery fields that require
dynamic responses and efficient route decisions. Through comparative analysis and practical
performance evaluation, we further confirmed the powerful capabilities of the dynamic optimization
model with multi-head attention mechanisms in handling complex routes and time window
constraints.

TABLE 3 Comparison of Total Path Lengths, Computation Times, and Customer Service Coverage
Rates for Different Models Across Various Scales

Scale Model Total Path Customer Service |Computation
Length Coverage Rate [Times(S)
A-n50-K5 |Static Optimization 3660.14 71% 12
A-n50-K5 |Single-Head Attention 2200.1 85% 21
A-n50-K5 |MA-RL 1830.07 91% 26
A-n50-K5 | Pynamic Without 2510.16 79% 14
Attention
A-n50-K5 |Genetic Algorithm 2012.21 88% 31
A-n50-K5 |Particle Swarm 2108.31 87% 28
Optimization
A-n50-K5 |Ant Colony Optimization 1950.68 90% 34
ﬁ'lr(‘)loo' Static Optimization 4930.14 6506 14
A-n100- Single-Head Attention 3000.1 79% 25
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K10

A-n100- o

K10 MA-RL 2465.07 88% 31
A-n100-  |Dynamic Without 0

K10 Attention 3410.76 5% 23
ﬁ'l'z)loo' Genetic Algorithm 2830.76 85% 39
A-n100-  [Particle Swarm 0

K10 Optimization 2968.48 83% 37
AR19% lant Colony Optimization 275353 86% 45
Q'Z%ZOO' Static Optimization 8510.14 60% 17
Q'Z%ZOO' Single-Head Attention 5500.1 78% 29
A-n200- .

K20 MA-RL 4255.07 85% 36
A-n200-  [Dynamic Without 0

K20 Attention 5002.56 70% 27
Q'Z%ZOO' Genetic Algorithm 4512.86 82% 49
A-n200-  [Particle Swarm 0

K20 Optimization 4724.74 80% 46
/2-2%200- Ant Colony Optimization 4351.84 84% 55
* A-n50-k5 indicates that this scale involves 5 vehicles delivering to 50 customers.

5.3 Comparision of Nomalized Outcomes

To thoroughly explore and emphasize the importance of the experimental findings, we normalized
the total path length, processing duration, and customer service coverage rate for each model across
various experimental scales. This normalization process establishs a fair standard for more accurately
evaluating the effectiveness of each model. Figure 3 through 5 illustrate the relative performance of
multiple models at different scales using this approach.

Figure 3 shows that MA-RL consistently achieved remarkable performance across all
experimental scales, significantly reducing path lengths and highlighting its efficiency in route
optimization. In contrast, the stationary optimization model lagged behind, exhibiting the greatest
increase in route length among all models. This stark contrast underscores the superior capability of
the multi-head attention mechanism in solving route optimization problems in dynamic environments.

In Figure 4, MA-RL proved its strong capacity to satisfy consumer needs, achieving the highest
satisfaction ratings across all test criteria. Conversely, the stationary optimization method showed the
worst performance in customer service coverage, underscoring its inability to handle complex
consumer demands in constantly changing circumstances.

Figure 5 shows that the stationary optimization framework outperformed other models in terms
of conventional computation duration due to its simpler calculation technique, resulting in faster
processing times. However, because MA-RL manages more complex data handling and decision-
making tasks, it often requires longer processing times. This implies that whie MA-RL is more
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efficient than its alternatives, there is still room for improvement in its computational efficiency.

Standardized Total Path Length by Model and Scale
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Figure 3 Comparison chart of standardized total path lengths of different models across various
scales
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Figure 4 Comparison chart of standardized customer service coverage rates of different models
across various scales
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Standardized Computation Times by Model and Scale
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Figure 5 Comparison chart of standardized computation times of different models across various
scales

6. Discussion and Conclusion

This study developed a novel adaptive route optimization method by integrating reinforcement
learning with multi-head attention mechanisms, specifically targeting real-time customer request
updates in the DVRPSR. Experimental results demonstrate significant advantages of MA-RL in
reducing total path lengths and improving customer service coverage rates, compared to other models.
These enhancements are particularly meaningful for practical applications in the logistics industry,
especially in terms of increasing transportation efficiency and reducing energy consumption.

Future research will focus on optimizing the computational efficiency of the multi-head attention
mechanisms and exploring predictive update strategies to further enhance the model's adaptability
and efficiency in complex logistics networks. Efforts will also be dedicated to refining the model's
architecture to reduce implementation costs and improve performance, ensuring rapid and effective
responses to customer needs in dynamically changing market environments.

Additionally, the progress of this study signals a deeper integration of artificial intelligence,
machine learning, and modern logistics management, driving digital transformation in the logistics
industry. This integration enhances the flexibility and response speed of logistics services, helping
businesses maintain a competitive edge in the fiercely competitive market by attracting and retaining
a broader customer base. In the long term, these technological advancements will optimize logistics
infrastructure at a societal level, promoting the construction of more efficient and sustainable logistics
networks.
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