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Abstract: Reservoir sensitivity evaluation is used to evaluate the degree of damage to various 

operating fluids and production parameters of the reservoir in the production process of oil 

and gas wells. The neural network is widely used in reservoir sensitivity forecasting because 

of its nonlinear solid fitting and generalisation ability. Although many neural network models 

have been applied to reservoir sensitivity forecasting, there is still room for improvement in 

the accuracy of the models. Therefore, to improve the prediction accuracy of the forecasting 

model, this study will introduce a novel convolutional neural network model (WOA-CNN-

BiGRU) integrated with a whale optimisation algorithm and bidirectional gated recurrent unit 

to forecast the sensitivity of low permeability reservoir. The experiment used relevant 

datasets to test the model strictly, and the previous BPNN, Elman, and RBF models were 

compared. The result shows that the percentage error of the WOA-CNN-BiGRU model was 

as low as 2.6%, which was lower than other forecasting models. The results show that the 

accuracy of the WOA-CNN-BiGRU model is not only higher than that of engineering 

measurement methods but also higher than that of other existing models, which has a good 

potential for application in the industry of reservoir sensitivity forecasting. 

1. Introduction  

Reservoir damage refers to the adverse changes in reservoir physical properties, permeability, or 

fluid properties caused by various factors in the oil and gas reservoir, thus affecting the production 

effect of oil and gas. These factors can be divided into geological, engineering, and chemical factors 

[1,2].  

Forecasting reservoir sensitivity is very important for oil and gas exploration and development. 

With a deeper understanding of reservoir characteristics and properties, oil and gas companies can 

develop and manage resources more effectively, improve production, reduce development risk, and 

improve economic efficiency. 

The current method of forecasting in engineering is to obtain the different sensitivity of the 

reservoir through many indoor core experiments. By conducting a series of experiments on cores 

collected from underground reservoirs, the damage degree of the reservoir was measured by 

Advances in Computer, Signals and Systems (2024) 
Clausius Scientific Press, Canada

DOI: 10.23977/acss.2024.080404 
ISSN 2371-8838 Vol. 8 Num. 4

20



computed tomography (CT) scanning, scanning electron microscopy (SEM), and X-ray diffraction 

(XRD) [3-5]. Although these experiments provide valuable information in oil and gas exploration 

and development, collecting and obtaining representative core samples can be expensive and 

challenging. The experiments with indoor core require a certain amount of time and cost. It requires 

a lot of resources, from collecting samples to conducting a series of experiments and analyzing 

experimental data. 

With the development of computer science, more and more techniques have been applied to 

evaluate reservoir sensitivity [6,7]. Nowadays, neural networks have been widely used to evaluate 

reservoir sensitivity. It simplifies the traditional core experiment process. Fen Chen [8] used the 

backpropagation (BP) neural network to predict the water sensitivity of reservoirs in the Ordos Basin 

and achieved good prediction results. However, the BP network is sensitive to initial weights and 

easily falls into local optimality. Fen Chen, Qiaozhi Wang [9,10] proposed the mathematical 

prediction model of the RBF neural network, which has a simple structure, strong nonlinear 

approximation ability, and less than 10% error between the predicted value and the actual value of 

the model. However, the model has poor interpretation and cannot work when the data is insufficient. 

Wang [11] proposed a multi-population genetic algorithm to optimize the Elman neural network 

model, which achieved good results in predicting the reservoir's acid, alkali, and salt sensitivity. 

However, due to the specific dependence of the genetic algorithm on the initial population, there is 

still room for improvement in the prediction accuracy. The average error of the model is around 0.025. 

In addition, Wang [12] established a stress sensitivity prediction model based on the XGBoost method. 

The correlation between the measured value and the predicted value is 0.87. The model is convenient, 

practical, and accurate. The above research shows that establishing a neural network model has 

become a meaningful way to measure the degree of reservoir damage. The current prediction model 

also has a lot of room for optimization. 

Therefore, from the progress of artificial intelligence in the field of sensitivity prediction, most 

existing models are machine learning models. Compared with the current popular deep learning 

networks, such models' accuracy still has room for improvement. Therefore, to focus on solving the 

problem of dependence of initial weights existing in current neural networks and easily falling into 

local optimality and to improve the convergence speed and prediction accuracy of neural networks, a 

reservoir sensitivity forecasting model based on a convolutional neural network optimized by whale 

algorithm and bidirectional gated recurrent units is proposed. This study applies a deep learning 

network to reservoir sensitivity prediction. In addition, with the addition of an intelligent optimization 

algorithm and attention mechanism, the model's prediction accuracy is improved. It has a good 

potential for application in reservoir sensitivity prediction. 

2. Related Work 

2.1. The Whale Optimization Algorithm 

The Whale Optimization Algorithm (WOA) is proposed by Seyedali Mirjalili in 2016, was 

inspired by the collaborative behaviour of whales during foraging and the strategy of chasing prey 

[13]. The Whale Optimization Algorithm performs well in solving various optimisation problems, 

particularly regarding global search, lack of gradient information, and adaptability. It is widely used 

in optics [14], medicine [15], electrical engineering [16], and other fields. It also has a good 

application in the hyperparameter optimisation of neural networks [17]. 

The purpose of whale hunting behaviour is to catch prey, and when a whale finds the prey first, 

other whales will swim to the whale that found the prey. There are three main types of whales feeding 

behaviour:  

1) Encircling prey: Suppose that in the D-dimensional space, the position of the current best 
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individual whale *X is 
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Where 
1j

kX 

 represents the k 'th dimension of the space coordinate 
1jX 

.As the number of 

iterations increases, a  linearly decreases by 2 to 0, and r1 and r2 are random numbers between 0 and 

1. 

2) Bubble net attack: Bubble net attack is a unique feeding behaviour of humpback whales. Two 

mathematical models are designed to simulate this behaviour. 
*X  represents the current position 

* * *

1 2( , , )dX X X
 of the individual whale. The individual whale's position is 1 2( , , )j j j

dX X X
. 

Encircling prey: This predation behaviour is roughly the same as the mathematical model for 

encircling prey. This study just changes the range of 1A
 from 

 ,a a
 to 

 1,1
. 

Spiral position update: The whale individual moves in a spiral towards the best whale individual, 

and its position update formula is  
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b  is the logarithmic spiral morphology constant and l  is a random number between -1 and 1. 

When whales hunt, they randomly choose between these two attack types. All of them pick one of 

them with a 50% chance. The mathematical model is  
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3) Search for prey: In the mathematical model of encircling prey, the value range of 1A
 is 

 1,1
. 

To improve the global search ability of the whale group, when the value range of 1A
 is not 

 1,1
, the 

individual whale may not move to the optimal individual, but to a random whale individual. Suppose 

that in d-dimensional space, the position of a random individual 
randX  in the current whale population 

is 1 2( , , )rand rand rand

dX X X
, and the position of the current whale individual 

jX  is 1 2( , , )j j j

dX X X
. Its 

location is 
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2.2. Convolutional Neural Networks 

Convolutional neural networks are deep learning neural networks primarily used to process and 

analyse data with a grid structure. Their design principles have led to significant achievements in 

image classification, object detection, and image generation tasks. It also has a good application in 

analysing data sets [18-20]. Recurrent neural networks are a class of neural networks used to process 

sequential data. It is widely used to predict sequence data [21,22]. Unlike traditional feedforward 

neural networks, RNNs have a cyclic structure that allows information to be passed around the 

network. This structure enables RNN to consider contextual information and time dependencies when 

processing sequence data. This study will use those neural network structures to train the datasets. 

3. The Proposed Model 

This section of this study will cover the entire model-building process. It includes the construction 

of a convolutional neural network and the optimisation of the whale algorithm. 

3.1. The CNN-BiGRU Model 

3.1.1. Bidirectional Gated Recurrent Unit 

 

Figure 1: The bidirectional gated recurrent network. 

BiGRU is a variant of recurrent neural networks that combines a bidirectional processing approach 

with a gated recurrent unit structure. As shown in Fig.1, a bidirectional GRU introduces two 

independent sequences of hidden states, one from front to back and the other from back to front. This 

allows the network to capture both past and future information simultaneously, which is very helpful 

for understanding context. BIGRU is widely used to predict sequence data [23,24]. Log data is a time 

series collected by logging instruments along the depth of the reservoir. Therefore, the information 

of a certain depth can be obtained from the log characterisation of the current depth and the log 

characterisation of the adjacent depth at that location. Aiming at the sequence characteristics of 

logging characterisation, this study will combine the BiGRU unit with the model to extract the 

sequence characteristics of logging data. 
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3.1.2. Squeeze-and-Excitation Attention 

 

Figure 2: The Squeeze-and-Excitation attention. 

Jie Hu originally proposed SE mechanism [25] aimed to improve convolutional neural networks' 

representational power. By learning to adjust the weight of each feature graph, the network pays more 

attention to the important features. This mechanism is widely used in neural networks [26,27]. As 

shown in Fig.2, this study will use this attention mechanism before the input of the BiGRU unit to 

improve the network's attention to important features and the efficiency of the model's information 

extraction. The feature map of the Conv layer is used as the network input. The second step is Squeeze. 

The feature map is globally average pooled to obtain a value within the channel's global receptive 

field. The third step of excitation is to learn the weight coefficient of each channel through the full 

connection layer so that the model can better distinguish the characteristics of each channel. In the 

fourth step, the Scale will generate the weight vector in the third step and assign the weight to the 

feature map to get the desired feature map. 

3.1.3. The CNN-BiGRU model 

 

Figure 3: The CNN-BiGRU model. 

Combining the BiGRU unit and the attention mechanism, this study will build the CNN-BiGRU 

model. As shown in Fig.3, the input layer of the model in the experiment is a 7 1 1   data, which 

contains seven input features. The data is then fed into two convolutional layers to extract local 

features of the data, allowing the network to learn a more abstract and high-level representation. The 

first convolution layer uses 32 convolution kernels of 3 1  and uses the same padding strategy with 

stride size 1. Therefore, this layer will output 32 7 1  feature maps. The data then enters the 

activation layer using the Relu function. The second convolution layer uses 64 convolution kernels 

of size 3 1 . After two convolutions, the neural network generates 64 3 1  feature maps. Then, the 
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data passes through the layer of attention mechanism and BiGRU. Finally, the data will pass through 

all the connection and regression layers and output the final result. 

3.2. The WOA-CNN-BiGRU Model 

First, the number of hidden layer nodes, initial learning rate, and regularisation parameters 

significantly impact model training results when setting hyperparameters for the CNN-BiGRU model. 

However, it is impossible to know under what value the model has the best training effect. Therefore, 

the whale optimisation algorithm will be used here to find the optimal number of hidden layer nodes, 

initial learning rate, and regularisation parameters. Then, the model starts training to get the final 

training effect. 

However, when solving complex optimisation problems, the whale optimisation algorithm is 

sensitive to the initial value, making it challenging to jump out of the local optimal value. It has a 

slow convergence speed, which limits the algorithm's optimisation performance. Therefore, many 

researchers optimised the whale optimisation algorithm and achieved a good application in the 

industry. Therefore, in this experiment, based on the original whale optimisation algorithm, various 

strategies will be used to optimise the whale optimisation algorithm. 

When the whale population is initialised, the position of the individual whales is entirely random.   

This may result in uneven distribution of the population in the solution space. As a result, the 

algorithm converges slowly and even falls into local optimal solutions. Therefore, a chaotic mapping 

method is used to initialise the whale population. The role of chaotic mapping in population 

initialisation is mainly to help the population explore more widely in the search space by introducing 

randomness and nonlinearity. It increases the diversity of the algorithm and the global search 

capability. The randomness generated by chaotic mapping can help the population avoid falling into 

the local optimal solution while maintaining a certain continuity, which is conducive to effective 

iterative optimisation in the search process. Chaotic maps are often introduced in computer 

engineering to generate random numbers and are used to replace the pseudo-random numbers 

distributed in Gaussian distributions [28-30]. The Circle chaotic mapping formula is  

1

0.5
mod ( 0.2 ( )sin(2 ),1)

2
i i iX X X


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                                               (5) 

According to Eq. (1), a  is a weight factor that balances global and local search ability. In the 

original paper, a  decreases linearly from 2 to 1 with the number of iterations. This monotone-

decreasing method will have a robust global search ability at the beginning and a robust local search 

ability at the end. This can cause the final fitness to fall into a local optimal value. So, let's change 

the value of a . 

min max min

max

( ) sin( )
t

a a a a
t


   

                                                    (6) 

mina
and maxa

 are the minimum and maximum values of weights. Respectively, the value is 0 and 

2. maxt
 represents the maximum number of iterations, and t  is the current number. 

This study introduces the sine factors in the updated method of a . At the beginning of the 

algorithm, the value of a  is low, and it pays more attention to local search. In continuous iteration, 

the value of a  gradually increases, and the local search turns into a global search. Finally, a  

gradually decreases, and the optimal solution is found in the local region. 

According to Eq. (3), whales will choose the encircling prey or spiral swimming with the 
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probability of 50%p  . The two methods tend to be local search and global search, respectively.  

Therefore, to balance global and local search capabilities, p  is optimised. 

max

max

0.6 0.5*

0.4 0.5*

t t
p

t t


 
                                                                (7) 

After modifying p, the algorithm pays more attention to global search in the early stage and local 

search in the later stage. 

The detailed steps of the WOA-CNN-BiGRU model are as follows (see Fig.4): 

Build the CNN-BiGRU model (Fig.3) and initialize the network weights and hyperparameters. 

1) Input the training datasets processed into the whale optimization algorithm to calculate the 

fitness later. 

2) The parameters to be optimized (initial learning rate, number of hidden layer nodes, 

regularization parameters) are taken as inputs to the whale optimization algorithm. The dimension of 

the search space is 3. Then, the population initialization is carried out, and in the initialization process, 

the circle chaotic map (Eq. (5)) is used to optimize the population distribution. 

3) The whale optimization algorithm starts to iterate. Each whale's fitness is calculated through 

the neural network's training, and the fitness is sorted to obtain the best and worst individuals in the 

current iteration population. 

4) Then the position of the whale is updated, and the position of each whale is updated using the 

algorithm with the position update formula having the adaptive weight (Eq. (6)) and the adaptive P 

probability formula (Eq. (7)) to obtain the population distribution of the next iteration. If the 

maximum number of iterations is not reached, continue to start from (4); otherwise, enter (6). 

5) The parameters corresponding to the optimal whale individual of the last iteration population 

are the optimal initial hyperparameters of the neural network. 

6) The optimal hyperparameters are used in the neural network for training. We use the mean 

squared error as an objective function. When the requirements of the train are met, the training of the 

neural network will be stopped. 

7) Use the test datasets to evaluate the current neural network and get the prediction. 

 

Figure 4: The flow chart of WOA-CNN-BiGRU. 
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4. Experiments and Discussions 

4.1. Construction of Datasets 

In this study, the well logging characteristics of wells in a western oilfield in China were selected 

as the experimental data set, and the well depths were 1820.5 m~1903.1 m. The sampling interval is 

0.1 m.  

The original dataset contained 826 pieces of data. Nine input characteristics are permeability, 

porosity, loss rate, illite-montmorillonite mixed layer, chlorite, illite, clay, carbonate, and iron. The 

target feature is acid sensitivity. 

4.1.1. Preprocessing of DataSets 

The original dataset contains nine input features and one output feature. This study will use the 

Spearman correlation coefficient to calculate the correlation of each input feature with the target 

feature. The result show that the correlation coefficients between permeability, chlorite, and acid 

sensitivity are very low. These two parameters are, therefore, removed from the dataset. 

To eliminate the influence of possible outliers on the model's training, the box diagram is used to 

find the outliers of the dataset. Some data exceeds the upper limit ( Q3 1.5 IQR  ). Therefore, this 

part of the abnormal data is deleted. 

This study will adopt the maximum-minimum normalisation to eliminate the scale difference 

between different features, accelerate the convergence process of the algorithm, and improve the 

training efficiency.  

After data preprocessing, the final dataset input to the model contains seven input features and one 

output feature. The dataset contains 817 data, of which 681 are used as training sets, and 136 are used 

as test sets. Table 1 shows some of the data in the dataset. 

Table 1: The partial final data set. 

depths(m) poro(%) lose (%) ill-

mon(%) 

illite(%) clay (%) carbo 

(%) 

iron (%) acid 

1820.5 0.343 0.093 0.699 0.539 0.456 0.336 0.566 0.590 

1823.8 0.671 0.552 0.188 0.161 0.305 0.719 0.719 0.293 

1832.9 0.106 0.483 0.985 0.277 0.735 0.531 0.786 0.609 

1851.2 0.526 0.397 0.919 0.408 0.622 0.898 0.011 0.384 

1855.3 0.430 0.687 0.278 0.292 0.832 0.584 0.487 0.572 

1877.5 0.022 0.765 0.418 0.071 0.797 0.377 0.799 0.821 

1890.9 0.110 0.534 0.367 0.036 0.129 0.943 0.794 0.232 

poro means porosity, lose means loss rate, ill-mon means illite-montmorillonite mixed layer, carbo 

means carbonate, acid means acid sensitivity 

4.2. Model Initialization 

Six models are established in the whole reservoir sensitivity prediction experiment. The BP model, 

the Elmanm model, the RBF model, the XGBoost model, and the original CNN model were also 

constructed for comparison and verification to compare the prediction effect of the WOA-CNN-

BiGRU model. 

4.2.1. The Contrast Model 

A three-layer BP neural network with seven input layer nodes, 15 hidden layer nodes and one 
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output layer node is established through the neural network toolbox. The training times are set to 

1000, the learning rate is set to 0.01, the target minimum error is set to 0.0001, and the momentum 

factor is set to 0.01. The Elman neural network contains seven hidden layers, and the maximum 

number of iterations of training is 1000. The RBF neural network's radial basis function expansion 

rate is 35, and the number of hidden layer neurons is 25. 

In this experiment, the XGBoost model will be used as the comparison model, in which the initial 

parameter learning rate is set to 0.1, the maximum depth of the tree is set to 3, the subsample 

proportion is set to 0.8, and the feature proportion is set to 0.8. 

4.2.2. The WOA-CNN-BiGRU Model 

As shown above, the experiment will build a CNN-BiGRU model optimised by the whale 

optimisation algorithm. In the initial parameters of the whale optimisation algorithm, the maximum 

iteration is set to 8, and the population number is set to 10. The search range for the learning rate is 

[0.001,0.01], the number of hidden layer nodes is [5,30], and the regularisation coefficient is 

[0.0001,0.1]. 

The maximum training time for the initial training parameters of the WOA-CNN-BiGRU model 

is 600. The whale optimisation algorithm gives the batch size, initial learning rate, and regularisation 

parameters. 

4.3. Performance Comparison 

To quantify the accuracy of various models for reservoir sensitivity forecasting, root-mean-square 

error, mean absolute error and mean absolute percentage error are selected as evaluation indexes. 

The BP, Elmanm, RBF, XGBoost, original CNN, and WOA-CNN-BiGRU models were trained 

based on the same data set. Through the prediction of the same test set, the evaluation indicators of 

each model are obtained, as shown in Table 2. 

Table 2: Evaluation index of each model 

Model RMSE MAE MAP 

BP 0.038 0.024 7.140 

Elman 0.035 0.024 0.024 

RBF 0.025 0.017 5.180 

XGBoost 0.028 0.020 5.328 

CNN 0.022 0.013 3.881 

WOA-CNN-BiGRU 0.018 0.009 2.642 

As shown in Table 2, the error of the traditional BP neural network model is relatively large due 

to its sensitivity to initial weights, with RMSE, MAE, and MAP reaching 0.038, 0.024, and 7.14%. 

During this experiment, the Elman and RBF models were trained in reservoir sensitivity forecasting. 

This model has some improvement in prediction accuracy, but the improvement is limited. This study 

also used the popular XGBoost model in the experiment. XGBoost's performance and flexibility make 

it one of the most efficient tools for many data scientists and machine learning practitioners. The 

prediction effect of this model is relatively good, with RMSE, MAE, and MAP reaching 0.028, 0.020, 

and 5.32%. Moreover, this study also used the original convolutional neural network model to 

compare the optimised convolutional neural network model. Finally, the research results have 

demonstrated the superiority of the WOA-CNN-BiGRU model in reservoir sensitivity forecasting. 

The accuracy of the WOA-CNN-BiGRU model is better than the BP, Elman, RBF, and XGBoost 

models proposed before. By optimising the WOA and BiGRU unit, the model has higher accuracy 

than the original convolutional neural network. The RMSE, MAE, and MAP of the WOA-CNN-
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BiGRU model are 0.019, 0.012, and 3.590%. Similarly, when analysing the error of the models, as 

shown in Fig.5, the error of the WOA-CNN-BiGRU model is the smallest, and its error curve is kept 

near the 0-horizontal line, which is better than the other five models. The results show that our model 

obtains more competitive results than the other five models. 

 

Figure 5: Error of 6 models 

The predicted value and actual value of the BP model, Elman model, RBF model, CNN model, 

XGB model, and WOA-CNN-BiGRU model for acid sensitivity of the reservoir were made into an 

intersection diagram, as shown in Fig.6. The figure shows that the errors of the BP model are 

relatively large due to the dependence on initial weights and the problem of local optimality. There 

are a lot of points that deviate from the y=x line. The predicted value of the CNN model is in good 

agreement with the actual value. However, with the WOA and BiGRU units, the predicted value of 

the WOA-CNN-BiGRU model for acid sensitivity best agrees with the actual value. The model makes 

finding the global optimal solution easier and reduces the situation of falling into the local optimal. 

Most points in Fig.6(f) are concentrated on y=x. As shown in Fig.6, The prediction error of the model 

is negligible for most data. The prediction error of some data is large for all models. We can see that 

almost all models have a large error near the point of 0.3. Examining these data individually, they 

may have abnormal values or noise due to measurement errors. 

 

Figure 6: Intersection diagram of the predicted and true values of 6 models 
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Based on the above analysis of experimental results, the WOA-CNN-BiGRU reservoir sensitivity 

model proposed in this paper has a specific improvement in accuracy and strong competitiveness 

compared with the traditional BP neural network model, Elman neural network model, RBF neural 

network model and machine learning method (XGBoost). The accuracy of the CNN model under 

optimisation of WOA and BiGRU has been further improved. This model has a specific reference 

value in reservoir sensitivity forecasting engineering practice. 

5. Conclusions 

Currently, most models used in reservoir sensitivity prediction are machine learning models and 

some simple neural network models. Some of the existing models depend on the initial weight value, 

which is easy to fall into the local optimisation problem. Their models' prediction accuracy has room 

for improvement. To solve these problems and improve the convergence speed and prediction 

accuracy, we propose a novel deep-learning model based on the hybrid optimisation of CNN and 

BiGRU units. We integrate the whale optimisation algorithm and BiGRU unit into the convolutional 

neural network, which improves the prediction accuracy of the neural network model and reduces the 

risk of falling into the local optimal. Compared with the BP model, the RBF model, and the Elman 

model used by predecessors, the accuracy of the WOA-CNN-BiGRU model to forecast reservoir 

sensitivity has been improved to a certain extent.  

The WOA-CNN-BiGRU model proposed in this paper can effectively alleviate the problems of 

time-consuming and high costs in laboratory experiments. This model maintains high accuracy, has 

strong universality, and can be quickly applied to other reservoirs. The proposed model has specific 

significance for building other forecasting models in reservoir sensitivity. 
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