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Abstract: Due to the potential safety hazards such as incorrect or missed aircraft guidance 

caused by human-operated guiding, the introduction of unmanned guiding vehicles can 

effectively reduce these unsafe events. However, the risks associated with unmanned driving 

guiding vehicles in the process of guiding aircraft taxiing have not yet been thoroughly and 

quantitatively studied. This paper collects the kinematic parameters of the unmanned driving 

guiding vehicle during the process of guiding manned aircraft, applies Monte Carlo 

simulation to generate a dataset of simulated operational processes that cover the entire 

taxiing guidance process, and introduces three major risk assessment indicators based on the 

motion process between the unmanned driving guiding vehicle and the manned aircraft 

during the taxiing guidance process. Through the normalization function of risk evaluation 

indicator weights and based on the Gaussian distribution that satisfies the normal distribution, 

a qualitative evaluation of risk levels is conducted based on quantifiable actual operational 

processes. The results show that quantifiable risk assessment indicators can provide risk 

evaluation results with stronger real-time reference and offer operable solutions for risk 

avoidance. 

1. Introduction 

The rapid advancement of unmanned driving technology has brought about revolutionary changes 

in the field of transportation. With the increasing application of unmanned vehicles, the associated 

safety risks have garnered significant attention. Scientific and systematic assessment of these risks is 

crucial for ensuring the sustainable development of unmanned driving. Preliminary exploration and 

application of this technology within airports have already commenced[1]. This paper investigates the 

safety risk assessment methods for unmanned Ground Support Equipment (GSE) operating within 

airports. 

The rise of unmanned driving technology has brought unprecedented opportunities and challenges 

to the transportation sector. However, like any emerging technology, unmanned driving faces a series 

of potential risks that require comprehensive assessment to ensure its safety and reliability. 
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The assessment of safety risks in vehicle and aircraft operations is key to evaluating the level of 

airport surface resource utilization. The current risk indicators applied to vehicle traffic include the 

following four categories:  

 Kinematic-based indicators, such as vehicle acceleration[2]. Washington et al. [3] proposed a two-

dimensional risk rating model based on vehicle speed and collision distance.  

 Data-based risk assessment models, such as Gaussian distribution accident rate risk assessment 

models constructed from data[4]. Bagschik G et al.[5] conducted statistical classification analysis of 

various unmanned vehicle driving risks based on existing experimental results.  

 Potential field-based risk assessment models. Dursun M et al.[6]  proposed the safety potential 

field theory, introducing acceleration parameters to improve the existing safety potential field model, 

depicting the changes in vehicle safety potential fields at different speeds and accelerations.  

 Indicators based on the time of motion change, such as Time to Collision (TTC), Time to React 

(TTR), and Post Encroachment Time (PET). Many car manufacturers have applied the TTC indicator 

to their advanced driver-assistance systems for emergency braking, but considering the significant 

differences in perception and motion state changes between unmanned and human-driven vehicles, 

human factors such as TTR are not suitable for studies on the safety analysis of unmanned vehicles. 

The safety risk indicators for aircraft operations mainly include the following three categories: 1) 

Actual on-site video detection analysis. Tianxiong Zhang et al.[7-8] implemented airfield aircraft video 

surveillance analysis through machine learning, evaluating aircraft encounter risks through wingtip 

distance. 2) Risk calculations considering the taxiing state of aircraft. Primatesta S et al.[9] integrated 

factors such as aircraft taxiing length, engine jet blast, and fuselage length to construct a conflict risk 

quantification model. Additionally, when aircraft operate mixed with other targets, the spatial ranges 

of aircraft models, nose protection areas, and wingtip safety zones must be considered for their impact 

on safe operation, to avoid property damage due to inadequate target detection during aircraft 

operation[10]. 

In the operation of unmanned vehicles, perception devices are affected by weather on radar 

reflectivity and the reduced level of target detection by cameras in low visibility[11]. Shalev-Shwartz 

et al.[12] proposed that traditional human-driven vehicles place high demands on drivers, and due to 

long reaction times and traffic disruptions, they explored the possibility of improving road traffic flow 

with unmanned vehicles combined with computer vision technology to reduce costs and average 

waiting times for vehicles in certain areas. Unmanned driving technology is expected to significantly 

improve traffic safety, traffic monitoring, and highway infrastructure management costs[13]. Elmahjub 

E et al.[14] discussed the transformative extraction of key features from videos and images obtained 

by computer vision algorithms, as well as improvements in traffic flow analysis methods, risk 

assessment, accident investigation, and road damage assessment. However, the obstacles faced by the 

large-scale deployment of unmanned vehicle cooperative operation technology are complex and 

interrelated, and strategies to overcome these obstacles and their impacts also need to be addressed[15-

17]. 

In summary, while there is extensive research on vehicle and aircraft conflict detection and risk 

assessment methods, studies considering the mixed operation of unmanned vehicles and human-

piloted aircraft within airport environments are scarce. The main reason is the significant differences 

in their operational processes, and sometimes risk assessment indicators need to consider driver and 

vehicle characteristics. However, considering both sets of operational indicators separately results in 

an extensive and unclear evaluation content[18]. For example, considering potential fields and other 

studies that can disregard the characteristics of the vehicle-aircraft themselves, the methods of 

integrating environmental information are complex and make it difficult to effectively visualize the 

results of multi-target risk assessments[19]. Therefore, this paper starts from the operational scenario 

of unmanned guidance vehicles implementing human-piloted aircraft within the airport environment 
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and proposes a multi-source information risk assessment model for vehicle-aircraft. By integrating 

vehicle perception and aircraft pilot observation information, combined with cloud-based vehicle and 

aircraft operation information, the mixed operation risks of vehicles and aircraft are graded, providing 

references and ideas for ensuring the safe mixed operation of unmanned vehicles and aircraft. 

2. Manuscript Preparation 

2.1. Risk Assessment Logic 

The risk assessment logic is based on the motion states of unmanned guidance vehicles and human-

piloted aircraft completing taxiing guidance tasks on airport taxiways. The study focuses on the 

unmanned guidance vehicle and the aircraft block as the research subjects. The aircraft block includes 

the aircraft itself and the effect area generated by the engine jet blast of the aircraft. The scope of the 

aircraft block is illustrated in Figure 1. 

Unmanned guidance vehicles, relying on their state perception modules and using vehicle 

perception data as a condition, combine this with the actual motion scenario to arrive at vehicle 

motion decision-making results. The execution process of vehicle motion is reflected in the changes 

in state evaluation indices such as vehicle speed, acceleration, throttle, and brake. In the previously 

established scenario of executing guidance tasks, vehicles can independently judge the surrounding 

environment and obstacles and make corresponding decisions. Based on the changes in vehicle 

motion state after decision-making, the distribution of motion states for both vehicles and aircraft is 

presented. By employing quantifiable risk assessment indicators, the risk levels of guidance tasks are 

defined, enabling the quantification of risks during the motion process between unmanned guidance 

vehicles and human-piloted aircraft. 

 

Figure 1: Technology Roadmap 

As depicted in Figure 1, the risk assessment technology roadmap of this paper is divided into three 

main parts: Unmanned Vehicle & Manned Aircraft Operation Stage, Data Analysis, and Risk Signal 

& Assessment. 

(1) Unmanned Vehicle & Manned Aircraft Operation Stage: This stage primarily investigates 

the replication of motion control functions of unmanned vehicles and the manned operation processes 

of aircraft within the airport. The functionality of unmanned vehicles is achieved using completed 

automatic control modules for target detection and motion trajectory tracking. 

 Aircraft Simulation: In experiments, it is necessary to collect data on the motion processes of 

preceding aircraft that affect the operation of unmanned vehicles. Using P3D aircraft simulation 

software, the motion processes of manned aircraft operating within the airport are tracked, ultimately 
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providing information on the aircraft's speed and position throughout the airport. 

 Unmanned Vehicle Simulation: After integrating automatic control functions into the unmanned 

vehicle, it is assumed that the vehicle will follow the preceding aircraft. The unmanned vehicle's 

sensors perceive the manned aircraft ahead and track the set path accordingly. During this process, 

motion data of the unmanned vehicle affected by the preceding manned aircraft is collected. 

(2) Data Analysis: This stage focuses on collecting kinematic parameter data of unmanned 

vehicles when they follow manned aircraft operating within the airport. Due to the limited number of 

experiments, it is not possible to accurately evaluate the actual motion states during repeated 

operations; therefore, Monte Carlo simulation is used to perform data-based simulation of the 

obtained scenario parameters. 

 Kinematics Parameter: The obtained speeds and accelerations of the unmanned vehicles, as well 

as the distance to the preceding aircraft, are taken as reference values to determine the kinematic 

parameters of the unmanned vehicles when influenced by the preceding aircraft. 

 Monte Carlo Simulation: Based on the obtained kinematic parameter values, data-driven Monte 

Carlo simulation is conducted on the motion process, with the objective of validating the experimental 

results under the premise of existing data and random distribution of motion outcomes, to enhance 

the accuracy of the results. 

(3) Risk Signal & Assessment: This stage investigates the motion states that must be maintained 

for safe operation based on the obtained data. By establishing Risk Signals, Risk Factor Relation 

Functions, and Risk Level classifications, the risk levels under the scenarios set forth in this paper 

become quantifiable indicators. 

 Risk Signal: Using the kinematic parameters obtained from previous steps, corresponding risk 

assessment indicators are defined to calculate risk levels from different dimensions, making risk 

quantifiable and providing a reference threshold. 

 Risk Factor Relation Function: As there are variations in the parameters required to achieve the 

target motion state during perception and decision-making by unmanned vehicles, the established risk 

assessment indicators differ in their ability to measure operational risks. Hence, corresponding weight 

relation functions are introduced to make the obtained risk thresholds more referential. 

 Risk Level: Based on the obtained risk indicators and the calculated distribution thresholds, risk 

levels for different states are classified through the weight relation function. The risk levels obtained 

define the riskiness and, based on the scenario risk levels, adaptive monitoring is conducted for the 

corresponding scenarios. 

2.2. Definition of Risk Boundaries 

During the experimental process, the perception range of the unmanned guidance vehicle for 

detecting targets ahead is modeled as an arc. This arc shape is not achievable in actual target detection 

but can be statistically accounted for through vehicle-aircraft-cloud data integration. The engine thrust 

power in breakaway mode dictates that the exhaust risk zone radius is approximately 1.67 to 2 times 

the length of the aircraft body. For ease of calculation, twice the body length is uniformly adopted as 

the radius of the exhaust range, with the center at the nose of the aircraft and an arc of 45 degrees. 

The simplified arc column center of the aircraft lies on the extension line of the engine exhaust danger 

zone, assumed to be at the nose, thus the arc radius is twice the body length, and the vehicle's detection 

range of the aircraft is a sector-shaped column. The pilot's observation of the unmanned vehicle is a 

rectangular prism, with the observation point at the nose of the aircraft, disregarding the distance 

between the cockpit and the nose. The pilot's field of view is arc-shaped, and the distance obtained 

when the unmanned guidance vehicle tangentially intersects with the observation arc is considered 

the observation distance, as shown in Figure 2. 
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Figure 2: Simplified Schematic of Unmanned guidance vehicle and Preceding Aircraft Perception 

The distance at which the front of the unmanned guidance vehicle tangentially intersects with the 

tail arc of the guide unit is considered the clear distance. When the preceding guide unit performs 

maneuvers, such as turning, the impact of the irregular configuration of the aircraft's tail on the 

following unmanned vehicle is not considered. As the aircraft pilot visually follows the unmanned 

guidance vehicle ahead, due to the significant difference in individual specifications, there is no need 

to optimize the vehicle ahead into an arc shape. Instead, only the shortest distance between the 

longitudinal centerline of the vehicle intersecting with the rear of the vehicle and the position of the 

aircraft's nose is considered, and this distance is defined as the clear distance L between the vehicle 

and the aircraft. Furthermore, when the aircraft turns at taxiway intersections, the simplification to a 

sector-shaped arc allows for the disregard of differences in the turning process compared to straight-

line motion, reducing the occurrence of high-risk events due to changes in motion states. 

In actual driving scenarios, considering that the aircraft lacks autonomous path decision-making 

capabilities, the pilot's reactive response to stimuli from other aircraft ahead or entities unrelated to 

the guidance task during taxiing is not considered. That is, the aircraft is only influenced by the motion 

state of the unmanned guidance vehicle implementing the taxiing guidance task ahead. 

2.3. Monte Carlo Simulation 

To investigate the risk association between unmanned vehicles and perceived targets, only the 

influence of perceived targets on the motion process of unmanned vehicles is considered. The aim is 

to replicate potential changes in the vehicle's motion states exponentially based on limited data, 

ultimately achieving accurate judgment of risk assessment results. 

This paper employs Monte Carlo simulation, focusing on the speed of unmanned vehicles as the 

experimental subject, to statistically test scenarios that may compromise airport safety due to extreme 

conditions such as inadequate vehicle perception equipment. 

The simulation generates random numbers within an interval that follow a Gaussian distribution 

with a mean (μ) representing the clear distance and a standard deviation (σ), with the distribution 

function expressed as follows: 

 i iX Z 
                                                                  (1) 

Where iX
 is the value of the random variable obtained in the ith simulation; μ is the mean of the 

Gaussian distribution, representing the average level of the random variable; σ is the standard 

deviation of the Gaussian distribution, representing the range of fluctuation of the random variable; 

iZ
 is the ith random number drawn from the random variables that follow the Gaussian distribution. 

When the unmanned vehicle does not perceive a target, the vehicle's motion process remains 

unchanged, and no motion state decision is made. If the unmanned vehicle perceives a preceding 

aircraft that impacts safe operation, it will make and execute a risk mitigation decision. If the 

unmanned vehicle detects that risk mitigation actions are insufficient to ensure safe operation, it will 
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adopt an aggressive motion decision strategy. Such an incident is defined as a high-risk event. 

2.4. Selection of Risk Indicators 

2.4.1. Full Velocity Difference between Unmanned guidance vehicle and Aircraft  

During the process of guiding aircraft, the lateral and longitudinal motion decisions of the 

unmanned guidance vehicle are derived from the vehicle's embedded lateral and longitudinal control 

modules. The lateral control module is influenced by the vehicle's position, performance, and 

parameters. Longitudinal control considers the impact of the vehicle's own power output, rotational 

speed, and torque, with the changes in these parameters ultimately reflected in the engine speed, 

vehicle velocity, and acceleration. The motion changes of manned aircraft are not only related to the 

aircraft engine thrust and control system type but are also affected by unstable factors such as the 

pilot's mental state and the distance to targets ahead. Considering the diversity of aircraft types, the 

uncertainty of pilot human factors, and the complexity of quantification, the difference in operation 

between the two is quantified solely in terms of velocity, with the calculation expressed as follows: 

2 2( ) ( )x yv v v    
                                                           (2) 

Where xv
, yv

represent the velocity differences of the two objects in the x and y directions, 

respectively. This formula calculates the Euclidean norm of the velocity vectors of two objects in 

three-dimensional space. 

In multi-target conflict analysis, the full velocity difference can be used to assess the speed changes 

in the motion of consecutive targets. Since the full velocity difference conveys directional information 

and the operating speeds of vehicles and aircraft within the airport are approximately similar, a sharp 

increase in the full velocity difference can indicate a significant difference in the direction of motion 

between the target and the subject.  

2.4.2. Expected Control Time 

The Expected Control Time (ECT) is calculated based on the motion state of the target and the 

interference from the target ahead, within the context of their state intervention space. It estimates the 

time it might take for the two entities to come into spatial contact due to uncontrollable factors. If the 

time to spatial contact is less than the permissible threshold set by relevant regulations and does not 

meet risk avoidance conditions, the risk level is independently categorized, and the uncontrolled 

target is required to cease movement immediately under the simulated conditions. The formula for 

calculating the Expected Control Time is as follows: 

2

2

2

2

L

v

v v aL
T

a

v v aL

a


 

    

 


    


          

0, 0

0, 0

0, 0

v a

v a

v a

   

   

                                                       (3) 

Where T represents the Expected Control Time, L is the clear distance between the consecutive 

targets, v  is the relative velocity between the targets, a  is the relative acceleration between the 

targets, and s is the relative motion distance between the targets. 

2.4.3. Minimum Expected Clear Distance 

In the mixed operation of unmanned guidance vehicles and aircraft on the airfield, the aircraft pilot 
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visually follows the guidance vehicle while taxiing within the airport from the cockpit. 

Based on the decision-making and execution process of the unmanned vehicle, the relationship 

between vehicle speed and motion distance can be derived. The motion change distance of the aircraft 

is as follows: 
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Where pv
  is the operating speed of the preceding target aircraft, pa

  is the acceleration of the 

aircraft, 1t  is the delay duration of the aircraft's motion change operation, 2t  is the duration of the 

aircraft's stable braking, and 3t  is the duration from stable braking until the aircraft's speed reaches 

zero. During this period, the unmanned vehicle should maintain a motion state similar to that of the 

aircraft to ensure a safe distance between them. 

Due to the sensitive perception and rapid decision-making execution of unmanned vehicles, the 

braking process can be simplified, and the braking distance is as follows: 

2

2

c
c

c

v
d

a


                                                                     (6) 

Furthermore, when the target ahead is not an aircraft, the calculation formula for pd
  can be 

simplified as follows: 

2

2

v
p

v

v
d

a


                                                                     (7) 

Where vv
 is the operating speed of the non-aircraft target ahead, and va

 is the acceleration of the 

non-aircraft target. 

Combining (5) and (7), the minimum expected clear distance between unmanned guidance 

vehicles and the target ahead within the airport can be determined as: 

 mins c pd d d d  
                                                          (8) 

Where sd
 is the minimum expected clear distance; mind

 is the minimum safety interval between 

vehicles and aircraft within the airport, typically set at 50 meters. 

 

Figure 3: Schematic Diagram of the Relationship between Vehicle Characteristic Parameters and 

Risk Indicators 
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As shown in Figure 3, the unmanned vehicle, equipped with automatic control functions, calculates 

the three set risk assessment indicators—full velocity difference, expected control time, and minimum 

expected clear distance—based on three kinematic parameters: vehicle motion speed, vehicle 

acceleration, and the clear distance between the vehicle's front and the preceding aircraft. The 

calculation of the full velocity difference only considers the impact of the velocity difference between 

the vehicle and the aircraft, while the expected control time must consider not only the vehicle's 

motion speed but also the changes in vehicle performance and motion state during acceleration and 

deceleration. The calculation of the minimum expected clear distance requires the unmanned vehicle's 

speed, acceleration, and the clear distance to the detected target. The final calculated full velocity 

difference and minimum expected clear distance will directly feedback to the unmanned vehicle and 

influence its subsequent motion state. 

3. Experimental Result 

In accordance with airport operational service rules, the average speed of the unmanned guidance 

vehicle during guidance tasks is set at 21.6 km/h (6 m/s), following a normal distribution with a mean 

(μ) of 21.6 and a standard deviation (σ) of 2, serving as the vehicle's initial speed. Assuming the 

vehicle travels at an average speed under normal conditions, it responds with appropriate speed 

changes upon perceiving a target ahead. A single-target scenario was generated 100 times, with a data 

collection interval of 1 ms. The vehicle's lateral speed changes are solely related to the path and do 

not consider emergency maneuvers such as lane changes to avoid targets ahead. 

Monte Carlo simulation was used to categorize and statistically analyze the indicators obtained 

from the experimental scenario. The resulting curve of the unmanned vehicle's decision-making 

process speed changes is shown in Figure 5. The vehicle's transition from stop to acceleration to 

constant speed is not entirely nonlinear or satisfying a specific curve equation, and there may be brief 

transient processes. During deceleration, the vehicle's speed change process generally does not 

experience transients. The maximum speed fluctuates within the range of 16 km/h to 26 km/h, which 

is consistent with the actual motion process of unmanned guidance vehicles in various lanes and 

sections within the airport environment. When the vehicle's speed is close to that of the target ahead, 

and the speed difference exceeds the average operating speed difference between vehicles, it can be 

considered that there is a certain risk in the operating speed. Conversely, if the average speed under 

this speed difference can be maintained, it is deemed safe. 

Based on the influence distance of aircraft jet blast on targets behind and the perception capabilities 

of unmanned vehicles, Monte Carlo simulation was conducted to simulate the tracking distance of 

unmanned vehicles, resulting in a vehicle distance maintenance distribution graph, as shown in Figure 

4. 

 

Figure 4: Distribution Graph of Proactive Decision-Making Safety Distance for Unmanned vehicles 

The frequency of unmanned vehicles maintaining a safe clear distance was statistically analyzed, 
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as shown in Figure 5. The vehicle's maintained distance ranges from 30 meters to 90 meters, with a 

concentration in the 40 to 80-meter range. Particularly when the distance is less than 40 meters, the 

frequency of occurrence significantly decreases, indicating that this range is not conducive to the safe 

driving of unmanned vehicles. When the distance is greater than 90 meters, due to the complexity of 

the airport's runway and taxiway structure, larger safety distances are not considered as samples for 

measuring vehicle safety distance. 

 

Figure 5: Frequency Graph of Safe Clear Distance for Unmanned vehicles 

Vehicles are subject to a certain degree of decision response error due to the influence of onboard 

perception equipment and the signal transmission process. This primarily affects the difference 

between the vehicle's theoretical motion state and the actual motion process. The obtained response 

density distribution graph is shown in Figure 6. The majority are greater than 0.1 seconds and less 

than 0.2 seconds, with the density distribution greater than 0.5 seconds being negligible. This paper 

only considers the impact of the unmanned vehicle's motion process on the safety of vehicle operation. 

 

Figure 6: Decision Response Density Distribution for Unmanned vehicles 

As calculated previously, the median safe distance for vehicles was found to be 84.32 meters, 

indicating that the distance between vehicles is often maintained at the aforementioned distance. By 

calculating the 5th percentile of the Gaussian distribution, the vehicle distance was found to be 50.13 

meters, yielding the minimum conflict distance value. The box plot of the safe distance and predicted 

conflict distance is shown in Figure 7. 

 

Figure 7: Box Plot of Safe Distance Distribution 

Considering the behavior and risk assessment indicators of unmanned vehicles operating within 

the airport, the risk levels for ensuring the operation of ground support equipment under different 
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scenarios were determined, as shown in Table 1. 

Table 1: Vehicle Operation Risk Assessment Strategy 

Full Velocity Difference 

(m/s) 
Expected Control Time (s) 

Minimum Expected Clear Distance 

(m) 

Operational 

Risk Level 

0.25v v   

rT T
 

s md d
 

Low Risk 

r s md d d 
 

High Risk 

s rd d
 

High Risk 

rT T
 

s md d
 

Low Risk 

r s md d d 
 

Medium Risk 

s rd d
 

High Risk 

0.25v v   

rT T
 

s md d
 

High Risk 

r s md d d 
 

High Risk 

s rd d
 

High Risk 

rT T
 

s md d
 

Medium Risk 

r s md d d 
 

High Risk 

s rd d
 

High Risk 

4. Conclusion 

The purpose of this study was to conduct high-precision simulations of the automatic control 

functions of unmanned vehicles and the motion processes of manned aircraft, with reference to the 

technical requirements of airport autonomous equipment and related airport operational service 

principles. Based on relevant literature, this paper proposes a risk assessment scheme for unmanned 

vehicles in scenarios where there is a significant difference in motion processes compared to aircraft. 

Unmanned vehicles achieve the reconstruction of the electric unmanned vehicle dynamics model 

under automatic control algorithms, with Carsim used to output and monitor vehicle dynamic 

performance. The operational behavior of unmanned vehicles in mixed operation with aircraft within 

the airport was objectively discussed, based on the known motion processes of manned aircraft. 

This paper employed a quantitative analysis method based on Monte Carlo simulation, simulating 

the motion parameters such as speed of unmanned vehicles during operation, to define risk indicators 

and categorize risk levels for scenarios where unmanned vehicles follow aircraft. The results indicate 

that the full velocity difference and minimum expected clear distance have a significant impact on 

the risk level of unmanned vehicles operating within the airport. When the speed of unmanned 

vehicles is controllable and the clear distance between perceived targets is within a reasonable range, 

other perceived targets do not pose a threat to driving safety. However, high-risk events may occur in 

certain scenarios due to the limitations of perception distance, necessitating improvements in vehicle 

hardware conditions. 

The paper validates the feasibility of the unmanned vehicle dynamics model by constructing an 

automatic control module based on vehicle characteristics. High-reliability scenario restoration 

verification of aircraft motion processes is achieved using simulation operation data from manned 

aircraft. This research aims to provide a viable reference scheme for subsequent definitions and 

considerations of risks associated with the operation of unmanned vehicles within airports. 

Nevertheless, due to the uncertainties in coordinate transformation and multi-target mixed 
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operation processes within the system, it is not possible to synchronize the motion behavior of fully 

unmanned vehicles with the piloting process of aircraft, which is one of the limitations of this study. 

Therefore, by collecting scenarios where manned aircraft determine that unmanned vehicles ahead 

affect the operation of the aircraft, it is possible to identify the three major risk assessment indicators 

for aircraft motion within the airport, evaluate the risk level of aircraft in complex operational 

scenarios, and define risk events. Using Monte Carlo simulation to fit experimental data, the risk level 

distribution of manned aircraft in risk scenarios under large sample data is obtained, providing a 

viable solution for subsequent risk indicator corrections. 

In the future, with the introduction of more unmanned vehicles within airports, it will be necessary 

to combine the differences in the dynamic performance of different ground support equipment to 

differentially evaluate risk indicators in complex scenarios, and to confirm the risk scenario level 

categorization decisions for such vehicles or various types of aircraft to ensure safe operation. 
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