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Abstract: The trajectory planning of robots refers to the motion design of the pose, 

velocity, and acceleration of the end effector (robot operating arm) in spatial motion. 

According to the requirements of the robot's task, the end effector moves along the 

expected trajectory from the initial state to the endpoint state. This article takes the 

PUMA560 robot as the object, uses an improved D-H parameter method to establish a 

coordinate system and design parameters, solves the forward and inverse kinematics of 

the robot. This article uses the fifth degree polynomial interpolation method to obtain the 

curves of robot joint angle, angular velocity, and angular acceleration over time, and uses 

Matlab's robot toolbox for trajectory planning simulation to verify the good motion 

performance of robot joints and the rationality of parameter design. 

1. Preface 

Today, robots are gradually being widely used in various fields such as automobiles, electronics, 

food, logistics, healthcare, picking, and life services. For robots in motion, the implementation of 

the pose motion of the robot's end effector is a key direction of robot research, which requires 

trajectory planning and dynamic simulation of robot humans. This article takes the PUMA560 robot 

as the object, solves the forward and inverse kinematics of the robot based on the D-H parameter 

method, simulates the robot kinematics using the MATLAB Robotics toolbox, and combines 

polynomial interpolation method to simulate the joint space trajectory of any two points of the 

robot's end effector. This can intuitively display the robot's motion situation, and uses q (position), 

qd (angular velocity), qdd (angular acceleration) Drawing function curves further analyzes the 

correctness and rationality of robot trajectory planning, providing a universal theoretical analysis 

basis for studying other types of robots and offline programming[1]. 

2. Establishment of Robot Motion Parameters and Coordinate System 

2.1. Establishing a Linkage Coordinate System 

The establishment of coordinate systems for each rotational joint of the robot and the 

corresponding linkage parameters are summarized as follows: 

(1) ix -axis: The direction of the common normal lines is consistent with the directions of axes iz
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and 1iz , and the direction of axes ix and iy is determined by the right-hand rule; 

(2) iy -axis: direction is determined by the right-hand rule based on ix  and iz ; 

(3) iz -axis: along the axial motion axis of the i+1 joint, pointing away from the direction of the i 

joint; 

(4) ia =Move the distance from iz to 1iz along the ix axis; 

(5) i =Around the ix axis, rotate from iz to an angle of 1iz ; 

(6) id =Move the distance from 1ix to ix along the iz axis; 

(7) i =Rotate around the iz axis from 1ix to ix degrees. 

2.2. Determine the robot transformation matrix 

The transformation matrix of a robotic arm is established by two rotations and two translations, 

based on the following rules, after specifying the coordinate system of the connecting rod, to 

establish the corresponding relationship between adjacent connecting rods i-1 and i: 

(1) Rotate axis 1ix around axis 1iz by i angles, aligning axis 1ix with axis ix ; 

(2) Translate a distance of id along the 1iz -axis to make the 1ix -axis and ix -axis coincide; 

(3) Translate a distance of ia along the ix axis, so that the origin of the coordinate system of 

connecting rod i -1 coincides with the origin of the coordinate system of connecting rod i ; 

(4) Rotate i degrees around the ix axis to align 1iz with iz . 

The relative position transformation relationship between connecting rod i and connecting rod i -1 

can be described by four homogeneous transformations, namely the connecting rod transformation 

matrix iA . 

       iiiii xRotaTransdTranszRotA  ,0,0,,0,0,                (1) 

In the formula: 
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From equation (1), it can be concluded that: 
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The above is the transformation matrix iA  of the connecting rod, which is the transformation 

matrix between adjacent connecting rods. When it is required to transform the end connecting rod, 

such as connecting rod 6 coordinate system relative to the i -1 connecting rod coordinate system, it 

is 6

1Ti  (which is 6

0T  with the base system). So there are: 

 212

1 AAT  ， 323

2 AAT  ， 3213

1 AAAT  ，                 (3) 

616

1 AAAT ii

i  

                               (4) 

The transformation formula is: 
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Therefore, for a 6-degree-of-freedom robot, the relationship 
6

0T  between the end effector and 

the base system is: 

6216

0 AAAT                                  (6) 

2.3. PUMA560 robot structure and D-H parameter modeling 

The PUMA560 robot belongs to a 6-degree-of-freedom rotational joint type robot. The first 3 

joints determine the position of the wrist reference point, the last 3 joints determine the orientation 

of the wrist, and the axis of the last 3 joints intersects at a point. This point is selected as the 

reference point for the wrist and also as the origin of the linkage coordinate systems {4}, {5}, and 

{6}. The axis of joint 1 is vertical, while the axes of joint 2 and joint 3 are horizontal and parallel, 

with a distance of 2a . The axes of joint 1 and joint 2 intersect vertically, while the axes of joint 3 

and joint 4 intersect vertically, with a distance of 3a . The coordinate systems of each connecting rod 

are shown in Figure 1[2]. 

 

Figure 1: Structure and coordinates of PUMA560 robot 

The D-H parameter method is a universal method proposed by Denavit and Hartenberg, which 

only requires 4 parameters to express the pose relationship between two coordinate systems. It is a 

method used to represent the relationship between robot linkages and joints. This method 
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corresponds the coordinate system to each joint, and expresses the pose transformation relationship 

between the coordinate systems by constructing a homogeneous transformation matrix between 

them, thereby obtaining a matrix for transforming from the robot base coordinate system to the end 

effector hand coordinate system. The corresponding D-H parameters of the connecting rod are 

shown in Table 1. 

Table 1: PUMA560 Robot D-H Link Parameters (Unit: mm) 

connecting 

rod 

i  

variable i  1i  1ia
 id

 Variable range 

1   901  0  0  0  
 160~160  

2   02   90  0   09.1492 d  
 45~225  

3   903  0   8.4312 a  0  
 225~45  

4   04  
 90   32.203 a

 
 07.4334 d  

 170~110  

5   05  
90  0  0  

 100~100  

6   06  
 90  0  0  

 266~266  

3. PUMA560 robot forward and inverse kinematics solution 

3.1. Forward kinematics solution of robots 

Based on the D-H linkage parameters and joint variables mentioned above, the forward 

kinematics solution is to solve the pose of the robot's end effector relative to the base system. From 

the transformation matrices 1A , 2A , 3A , 4A , 5A , 6A  of each adjacent connecting rod, the 

transformation matrix 6

0T  of the end effector can be obtained, and there is: 6216

0 AAAT  . 

Further results can be obtained: 
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Note that in all of the above content: 

iis sin ; iic cos ; iii ss  sin ; 

  jijijiij sccss  sin ;   jijijiij ssccc  cos . 

3.2. Inverse kinematics solution of robots 

The so-called inverse solution in robotics refers to solving the joint variables 1 , 2 , 3 , 4 , 

5  and 6  of the robot in reverse by knowing the geometric parameters of the robot's connecting 

rod and the end effector pose 6

0T , that is, knowing n , o , a and p . The method is to use an 

unknown inverse transformation to multiply both sides of equation (7), separate the joint variables, 

and solve them accordingly. When solving, it should be noted that the joint angle cannot be 

calculated using arccosine arccos, but rather using the two independent variables x and y of the 

bivariate arctangent function atan2. When x or y are zero, they have a definite meaning. The 

specific solution steps are as follows[3]: 

Find 1  

The left side of equation (7) can be obtained by inverse transformation  1
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Can be obtained: 

 211 dpcps yx                               (11) 

By utilizing trigonometric substitution and the bivariate arctangent function atan2( xy pp , ), we 
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obtain: 

1 =a  xy pp ,2tan -a  2

2

22

2 ,2tan dppd yx                   (12) 

Find 3  

Two equations can be obtained from equations (10): 
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The sum of squares of simultaneous equations (11) and equations (13) is: 

ksdca  3433                                (14) 

In the formula:
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Similarly, using trigonometric substitution to obtain 3 : 

 3 =atan2  43 , da -atan2  22
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3, kdak                     (15) 

In the formula, the positive and negative signs represent the two possible solutions 

corresponding to 3 . 

Find 2  

To solve 2 , multiply the left side of equation (7) by an inverse transformation of
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By making the elements in the first row, fourth column, and second row, fourth column of the 

matrix equation correspond equally on both sides, we can obtain: 
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By solving equations (17) together, 23s and 23c can be obtained, and then 23 can be obtained. 

Therefore, it can be concluded that: 
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Since 3 has already been calculated in the above, obtaining 2 is: 

3232                                   (19) 

By using this method to calculate 4 , 5 and 6 in sequence, we can obtain: 

4 =a  2323123111 ,2tan sacsaccacasa zyxyx                  (20) 
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5 =atan2  55 ,cs                                (21) 

6 =atan2  66 ,cs                                (22) 

4. Robot trajectory planning 

The so-called trajectory planning is to design the state parameters of the end effector during the 

working process based on job requirements, specific environments, and specified motion 

characteristics, in order to find a collision free path from the starting state to the target state. To 

enable a robot to complete a given task, it is necessary to plan and coordinate its trajectory. When 

robots work under continuous trajectory control, trajectory planning in Cartesian space (Cartesian 

space) is usually used to obtain the function of the pose of the end effector with respect to time. 

This trajectory planning method requires a large amount of computation and may have problems 

such as spatial homogeneity points and sudden changes in joint variable curves. When the robot 

performs trajectory planning in joint space, that is, point-to-point motion planning, the motion of 

each joint of the robot does not need to be linked, only focusing on the pose of the end effector 

starting and ending points, without any requirements for the process motion pose. Under this 

method, the rotation angle of each joint is the main variable for trajectory planning. Within the 

range of joint motion limitations, there will be no problem of exceeding limits and singularities, and 

the solution operation is simple. Therefore, this article mainly conducts robot trajectory planning in 

joint space. 

To plan the motion trajectory in joint space, inverse kinematics solution is required. The angle 

values of each joint point are obtained by solving the passing points, and the smooth function with 

respect to time is determined by using the angle value as a variable. At the same time, in order to 

better analyze the motion characteristics, it is necessary to determine the function of motion 

parameters such as joint angular velocity and angular acceleration with respect to time. It should be 

noted that there are more than one function that satisfies the above waypoints, so constraint 

conditions are required. The pose constraints of the starting and ending points, as well as the 

velocity of the starting and ending points, are zero. The trajectory planning solution is obtained 

through polynomial interpolation method. In this paper, the path planning of the robot is carried out 

using the fifth degree polynomial interpolation method[4]. 

In joint space, the fifth degree polynomial interpolation method is used for path planning. For the 

smoothing function )(t of each joint, the fifth degree polynomial has 6 undetermined coefficients. 

In order to achieve smooth motion of the joint, 6 constraint conditions are required: position 

constraints of the two endpoints, velocity constraints, and acceleration constraints. The position 

constraint of endpoints refers to the joint angles corresponding to the starting and ending poses. 

Assuming that the initial angle of a joint satisfies: 



















0

0

0

(0)

)0(

)0(

a





                                  (23) 

At the termination point, the joint needs to meet the following conditions: 
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These 6 constraints can uniquely determine a fifth degree polynomial: 
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Substituting equations (23) and (24) into equations (25), (26), and (27) respectively, the system 

of equations can be obtained as follows: 
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By substituting it into equation (25), a unique equation curve can be obtained. 

5. Matlab simulation of robots 

5.1. Simulation of robot forward and inverse kinematics 

The modeling and simulation of robots are based on the established D-H parameter table, using 

the LINK function in the MatlabRobotics toolbox to determine the robot object, and using this robot 

function to establish the entire robot object. The calling format of the LINK function is: 

)],([ CONVENTIONsigmaalphaADthetaLINKL   

In the above calling format, theta represents the rotation angle of the joint; D represents the 

offset of the connecting rod, which is the distance between the x-axis of adjacent joints; A 

represents the length of the connecting rod; Alpha represents the torque angle of the connecting rod; 

Sigma represents joint types: 1 is a moving joint, 0 is a rotating joint; The parameter 

CONVENTION includes two options: "standard" is the standard D-H parameter representation; 

"Modified" is an improved D-H parameter representation. 

The program for solving the forward and inverse kinematics of the PUMA560 robot is as 

follows: 
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>> % theta d a alpha offset 

L11=Link([0 0 0 0 0 ],'modified');L21=Link([0 0 0 pi/2 0 ],'modified'); 

L31=Link([0 0.1501 0.4318 0 0 ],'modified');L41=Link([0 0.4318 0.0203 -pi/2 0 ],'modified'); 

L51=Link([0 0 0 pi/2 0 ],'modified');L61=Link([0 0 0 -pi/2 0 ],'modified'); 

h=SerialLink([L11 L21 L31 L41 L51 L61],'name','puma560'); 

>>  % Forward kinematics solution 

h;fkine(h,[0,pi/2,0,0,pi,0])   

 ans =  

         0         0         1   -0.4318 

         0         1         0   -0.1501 

        -1         0         0    0.4521 

         0         0         0         1 

The obtained matrix is the homogeneous transformation matrix corresponding to the pose of the 

end effector. 

The inverse kinematics solution involves finding the corresponding joint variables through a 

given homogeneous transformation matrix. For example, assuming that the robotic arm needs to 

move to the [0, - pi/4, - pi/4,0, pi/8,0] pose, the homogeneous transformation matrix corresponding 

to the end effector pose is:>> q=[0,-pi/4,-pi/4,0,pi/8,0] 

q = 0  -0.7854  -0.7854  0  0.3927  0 

>> T=fkine(h,q) 

T =  

    0.3827         0     0.9239    0.7371 

         0         1         0   -0.1501 

   -0.9239          0    0.3827   -0.3256 

         0         0         0        1 

Now assuming that the homogeneous transformation matrix T mentioned above is known, the 

corresponding joint rotation angle can be obtained through the inverse solution function ikine: 

>> qi=ikine(h,T) 

qi =0.0000   -0.7854   -0.7854    0.0000    0.3927   -0.0000 

It is assumed that the robotic arm needs to move to the joint values of [0, - pi/4, - pi/4,0, pi/8,0] 

postures. 

5.2. Robot trajectory planning and simulation 

Due to space constraints, the planning and simulation program has been omitted[5]: 

 % theta d a alpha offset 

L11=Link([0 0 0 0 0 ],'modified');L21=Link([0 0 0 pi/2 0 ],'modified'); 

L31=Link([0 0.1501 0.4318 0 0 ],'modified');L41=Link([0 0.4318 0.0203 -pi/2 0 ],'modified'); 

L51=Link([0 0 0 pi/2 0 ],'modified');L61=Link([0 0 0 -pi/2 0 ],'modified'); 

h=SerialLink([L11 L21 L31 L41 L51 L61],'name','puma560'); 

... 

plot(1+1+t3,q3dd);xlabel ('time (s) ');ylabel ('angular acceleration (rad/s) ');legend ('joint 1 ',' 

joint 2 ',' joint 3 ',' joint 4 ',' joint 5 ',' joint 6 ') 

The obtained 3D model of PUMA560 robot is shown in Figure 2, and the angular displacement, 

angular velocity, and angular acceleration curves of the robot are obtained, as shown in Figures 3, 4, 

and 5. 
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Figure 2: 3D model of PUMA560 robot 

It is also possible to manually drive the six sliding bars on the left side of the robot as shown in 

the right figure of Figure 2 to drive the various joints of the robot, in order to achieve the goal of 

driving the end effector of the robot. 

 

Figure 3: Angular displacement variation curve 

 

Figure 4: Angular velocity variation curve 

 

Figure 5: Angular acceleration variation curve 
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6. Conclusion  

This article first analyzes the establishment of a six degree of freedom robot kinematic model 

based on the D-H parameter method, analyzes the linkage transformation matrix, and then obtains 

the relationship between the end effector of the six degree of freedom robot and the base system. 

Next, the structure, D-H parameters, and forward and inverse kinematics solutions of the PUMA560 

robot were analyzed. Then, Matlab Robotics Toolbox was used to simulate and verify the forward 

and inverse kinematics of the PUMA560 robot. Finally, the fifth degree polynomial interpolation 

method was used to simulate the joint space trajectory planning of any two points of the robot's end 

effector. The specific conclusion is as follows: (1) Sorted out the relevant rules for robot parameter 

modeling and established the D-H parameters of the robot. According to the simulation verification 

of forward and inverse kinematics, the given homogeneous transformation matrix T is consistent 

with the corresponding joint angle values; (2) Using fifth degree polynomials in joint space to 

simulate the trajectory planning of PUMA560 robot at any two points, smooth transition curves of 

displacement, velocity, and acceleration can be obtained, indicating the smooth motion of the robot 

and verifying the rationality of trajectory planning; (3) Through the driving bar in the 3D model of 

Matlab Robotics Toolbox, real-time changes in robot joint angles can be visually displayed through 

manual operation. Simultaneously using the Matlab Robotics toolbox can improve robot efficiency, 

reduce costs, and provide reference for the development of related six degree of freedom robots[6]. 
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